Page 28 - 2019_03-Haematologica-web
P. 28
Perspective Article
oxide via inhibition of interleukin-1beta- converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med. 1997;185(4):601-607.
15. Miao H, Hu YL, Shiu YT, et al. Effects of flow patterns on the localization and expres- sion of VE-cadherin at vascular endothelial cell junctions: in vivo and in vitro investiga- tions. J Vasc Res. 2005;42(1):77-89.
16. Young EW, Watson MW, Srigunapalan S, Wheeler AR, Simmons CA. Technique for real-time measurements of endothelial per- meability in a microfluidic membrane chip using laser-induced fluorescence detection. Anal Chem. 2010;82(3):808-816.
17. Biffl WL, Moore EE, Offner PJ, Ciesla DJ, Gonzalez RJ, Silliman CC. Plasma from aged stored red blood cells delays neutrophil apoptosis and primes for cytotoxicity: abro- gation by poststorage washing but not prestorage leukoreduction. J Trauma. 2001;50(3):426-432.
18. Cardo LJ, Wilder D, Salata J. Neutrophil prim- ing, caused by cell membranes and microvesicles in packed red blood cell units, is abrogated by leukocyte depletion at collec- tion. Transfus Apher Sci. 2008;38(2):117-125.
19. Jank H, Salzer U. Vesicles generated during storage of red blood cells enhance the gener- ation of radical oxygen species in activated neutrophils. ScientificWorldJournal. 2011;11:173-185.
20. Silliman CC, Moore EE, Kelher MR, Khan SY, Gellar L, Elzi DJ. Identification of lipids that accumulate during the routine storage of prestorage leukoreduced red blood cells and cause acute lung injury. Transfusion. 2011;51(12):2549-2554.
21. Belizaire RM, Prakash PS, Richter JR, et al. Microparticles from stored red blood cells activate neutrophils and cause lung injury after hemorrhage and resuscitation. J Am Coll Surg. 2012;214(4):648-655; discussion 656-657.
22. Morrison A, McMillan L, Hornsey VS, Prowse CV. Stored red-blood-cells inhibit platelet function under physiologic flow. Vox Sang. 2010;99(4):362-368.
23. Bonomini M, Sirolli V, Gizzi F, Di Stante S, Grilli A, Felaco M. Enhanced adherence of human uremic erythrocytes to vascular endothelium: role of phosphatidylserine exposure. Kidney Int. 2002;62(4):1358-1363.
24. Karam O, Tucci M, Toledano BJ, et al. Length of storage and in vitro immunomod- ulation induced by prestorage leukoreduced red blood cells. Transfusion. 2009;49(11):2326-2334.
25. Macey MG, Wolf SI, Wheeler-Jones CP, Lawson C. Expression of blood coagulation factors on monocytes after exposure to TNF-treated endothelium in a novel whole
blood model of arterial flow. J Immunol
Methods. 2009;350(1-2):133-141.
26. Anniss AM, Sparrow RL. Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions. Transfusion. 2006;46(9):1561-
1567.
27. Luk CS, Gray-Statchuk LA, Cepinkas G,
Chin-Yee IH. WBC reduction reduces stor- age-associated RBC adhesion to human vas- cular endothelial cells under conditions of continuous flow in vitro. Transfusion. 2003;43(2):151-156.
28. Holtom E, Usherwood JR, Macey MG, Lawson C. Microparticle formation after co- culture of human whole blood and umbilical artery in a novel in vitro model of flow. Cytometry A. 2012;81(5):390-399.
29. Robert J, Weber B, Frese L, et al. A three- dimensional engineered artery model for in vitro atherosclerosis research. PLoS One. 2013;8(11):e79821.
30. Burns JM, Yang X, Forouzan O, Sosa JM, Shevkoplyas SS. Artificial microvascular net- work: a new tool for measuring rheologic properties of stored red blood cells. Transfusion. 2012;52(5):1010-1023.
31. Morgan JP, Delnero PF, Zheng Y, et al. Formation of microvascular networks in vitro. Nat Protoc. 2013;8(9):1820-1836.
32. Chrobak KM, Potter DR, Tien J. Formation of perfused, functional microvascular tubes in vitro. Microvasc Re. 2006;71(3):185-196.
33. Muller K, Fedosov DA, Gompper G. Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep. 2014;4:4871.
34. Martinez-Duarte R, Madou M. SU-8 Photolithography and its impact on microfluidics. 2010. In: Microfluidics and Nanofluidics Handbook: Fabrication, Implementation and Applications.pp239- 240.
35. Ozbolat V, Dey M, Ayan B, Povilianskas A, Demirel MC, Ozbolat IT. 3D Printing of PDMS improves its mechanical and cell adhesion properties. ACS Biomaterials Science & Engineering. 2018;4(2):682-693.
36. Palpant NJ, Pabon L, Roberts M, et al. Inhibition of beta-catenin signaling respeci- fies anterior-like endothelium into beating human cardiomyocytes. Development. 2015;142(18):3198-3209.
37. Albanyan AM, Harrison P, Murphy MF. Markers of platelet activation and apoptosis during storage of apheresis- and buffy coat- derived platelet concentrates for 7 days. Transfusion. 2009;49(1):108-117.
38. Almizraq R, Tchir JD, Holovati JL, Acker JP. Storage of red blood cells affects membrane composition, microvesiculation, and in vitro
quality. Transfusion. 2013;53(10):2258-2267. 39. Aucar JA, Isaak E, Anthony D. The effect of red blood cell age on coagulation. Am J Surg.
2009;198(6):900-904.
40. Bayer SB, Hampton MB, Winterbourn CC.
Accumulation of oxidized peroxiredoxin 2 in red blood cells and its prevention. Transfusion. 2015;55(8):1909-1918.
41. Karger R, Lukow C, Kretschmer V. Deformability of red blood cells and correla- tion with ATP content during storage as leukocyte-depleted whole blood. Transfus Med Hemother. 2012;39(4):277-282.
42. Antonelou MH, Tzounakas VL, Velentzas AD, Stamoulis KE, Kriebardis AG, Papassideri IS. Effects of pre-storage leuko- reduction on stored red blood cells signaling: a time-course evaluation from shape to pro- teome. J Proteomics. 2012;76 (Spec No.):220-238.
43. Fischer D, Bussow J, Meybohm P, et al. Microparticles from stored red blood cells enhance procoagulant and proinflammatory activity. Transfusion. 2017;57(11):2701- 2711.
44. Boomgaard MN, Gouwerok CW, Homburg CH, de Groot G, IJsseldijk MJ, de Korte D. The platelet adhesion capacity to suben- dothelial matrix and collagen in a flow model during storage of platelet concen- trates for 7 days. Thromb Haemost. 1994;72(4):611-616.
45. Anniss AM, Sparrow RL. Variable adhesion of different red blood cell products to acti- vated vascular endothelium under flow con- ditions. Am J Hematol. 2007;82(6):439-445.
46. Maier S, Holz-Holzl C, Pajk W, et al. Microcirculatory parameters after isotonic and hypertonic colloidal fluid resuscitation in acute hemorrhagic shock. J Trauma. 2009;66(2):337-345.
47. Gonzalez AM, Yazici I, Kusza K, Siemionow M. Effects of fresh versus banked blood transfusions on microcircula- tory hemodynamics and tissue oxygenation in the rat cremaster model. Surgery. 2007;141(5):630-639.
48. Chin-Yee IH, Gray-Statchuk L, Milkovich S, Ellis CG. Transfusion of stored red blood cells adhere in the rat microvasculature. Transfusion. 2009;49(11):2304-2310.
49. Jang JE, Hod EA, Spitalnik SL, Frenette PS. CXCL1 and its receptor, CXCR2, mediate murine sickle cell vaso-occlusion during hemolytic transfusion reactions. J Clin Invest. 2011;121(4):1397-1401.
50. Cabrales P, Intaglietta M, Tsai AG. Transfusion restores blood viscosity and reinstates microvascular conditions from hemorrhagic shock independent of oxygen carrying capacity. Resuscitation. 2007;75 (1):124-134.
434
haematologica | 2019; 104(3)