Page 180 - 2019_03-Haematologica-web
P. 180
586
N. Giménez et al.
References
1. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390.
2. Fabbri G, Dalla-Favera R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer. 2016;16(3):145– 162.
3. Delgado J, Salaverria I, Baumann T, et al. Genomic complexity and IGHV mutational status are key predictors of outcome of chronic lymphocytic leukemia patients with TP53 disruption. Haematologica. 2014;99 (11):e231-234.
4. Zenz T, Eichhorst B, Busch R, et al. TP53 mutation and survival in chronic lympho- cytic leukemia. J Clin Oncol. 2010;28(29): 4473–4479.
5. Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identi- fies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121(8): 1403–1412.
6. Baliakas P, Hadzidimitriou A, Sutton L-A, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29(2):329–336.
7. Puente XS, Beà S, Valdés-Mas R, et al. Non- coding recurrent mutations in chronic lym- phocytic leukaemia. Nature. 2015;526 (7574):519–524.
8. Quesada V, Conde L, Villamor N, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2012;44(1):47–52.
9. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolu- tion in progression and relapse. Nature. 2015;526(7574):525–530.
10. Wang L, Lawrence MS, Wan Y, et al. SF3B1 and other novel cancer genes in chronic lym- phocytic leukemia. N Engl J Med. 2011;365(26):2497–2506.
11. Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal muta- tions in chronic lymphocytic leukemia. Cell. 2013;152(4):714–726.
12. Jeromin S, Weissmann S, Haferlach C, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patient. Leukemia. 2014;28(1):108–117.
13. Nadeu F, Delgado J, Royo C, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127(17):2122–2130.
14. Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16(5):281–298.
15. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human can- cer. Nature. 2002;417(6892):949–954.
16. Forbes SA, Beare D, Boutselakis H, et al. COSMIC: Somatic cancer genetics at high- resolution. Nucleic Acids Res. 2017;45(D1): D777–D783.
17. Tiacci E, Trifonov V, Schiavoni G, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–2315.
18. Tiacci E, Pettirossi V, Schiavoni G, Falini B.
Genomics of Hairy cell leukemia. J Clin
Oncol. 2017;35(9):1002–1010.
19. Pakneshan S, Salajegheh A, Smith RA, Lam
AK. Clinicopathological relevance of BRAF mutations in human cancer. Pathology. 2013;45(4):346–356.
20. Buscà R, Pouysségur J, Lenormand P. ERK1 and ERK2 map kinases: specific roles or functional redundancy? Front Cell Dev Biol. 2016;453.
21. Jebaraj BMC, Kienle D, Bühler A, et al. BRAF mutations in chronic lymphocytic leukemia. Leuk Lymphoma. 2013;54(6):1177–1182.
prevalence of MAP2K1 mutations in variant and IGHV4-34-expressing hairy-cell leukemias. Nat Genet. 2014;46(1):8–10.
35. Brown NA, Furtado L V, Betz BL, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood. 2014;124(10):1655– 1658.
36. Schmidt J, Ramis-Zaldivar JE, Nadeu F, et al. Mutations of MAP2K1 are frequent in pedi- atric-type follicular lymphoma and result in ERK pathway activation. Blood. 2017;130(3):323–327.
37. Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and tran- scriptional regulation. Gene. 2013;513(1):1–
22. Pandzic T, Larsson J, He L, et al. Transposon mutagenesis reveals fludarabine-resistance mechanisms in chronic lymphocytic
leukemia. Clin Cancer Res. 2016;22(24): 13.
6217–6227.
23. Damm F, Mylonas E, Cosson A, et al.
Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 2014;4(9):1088–1101.
24. Leeksma AC, Taylor J, Wu B, et al. Clonal diversity predicts adverse outcome in chron- ic lymphocytic leukemia. Leukemia. 2018 Jul 23. [Epub ahead of print]
25. Müller-Hermelink H, Montserrat E, Catovsky D et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma. WHO classification of tumours of haematopoietic and lymphoid tissues. IARC: International Agency for Research on Cancer; Lyon, 2008; 4th edition. Pages 180- 183.
26. Rossi D, Cerri M, Deambrogi C, et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independ- ent of del17p13: Implications for overall sur- vival and chemorefractoriness. Clin Cancer Res. 2009;15(3):995–1004.
27. Rossi D, Fangazio M, Rasi S, et al. Disruption of BIRC3 associates with flu- darabine chemorefractoriness in TP53 wild- type chronic lymphocytic leukemia. Blood. 2012;119(12):2854–2862.
28. Lazarian G, Guièze R, Wu CJ. Clinical Implications of novel genomic discoveries in chronic lymphocytic leukemia. J Clin Oncol. 2017;35(9):984–993.
29. Downward J. Targeting RAS signalling path- ways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22.
30. Imperial R, Toor OM, Hussain A, Subramanian J, Masood A. Comprehensive pancancer genomic analysis reveals (RTK)- RAS-RAF-MEK as a key dysregulated path- way in cancer: its clinical implications. Semin Cancer Biol. 2017 Nov 22. [Epub ahead of print].
31. Wan PTC, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855–867.
32. Sellar RS, Fend F, Akarca AU, et al. BRAFV600E mutations are found in Richter syndrome and may allow targeted therapy in a subset of patients. Br J Haematol. 2015;170(2):282–285.
33. Nadeu F, Clot G, Delgado J, et al. Clinical impact of the subclonal architecture and mutational complexity in chronic lympho- cytic leukemia. Leukemia. 2017;32(3):645- 653.
34. Waterfall JJ, Arons E, Walker RL, et al. High
38. Thomas RK, Baker AC, Debiasi RM, et al. High-throughput oncogene mutation profil- ing in human cancer. Nat Genet. 2007;39(3):347–351.
39. Warden DW, Ondrejka S, Lin J, Durkin L, Bodo J, Hsi ED. Phospho-ERK(THR202/ Tyr214) is overexpressed in hairy cell leukemia and is a useful diagnostic marker in bone marrow trephine sections. Am J Surg Pathol. 2013;37(2):305–308.
40. Burotto M, Chiou VL, Lee J-M, Kohn EC. The MAPK pathway across different malig- nancies: a new perspective. Cancer. 2014;120(22):3446–3456.
41. Eroglu Z, Ribas A. Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in ther- apy. Ther Adv Med Oncol. 2016;8(1):48–56.
42. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–2516.
43. Dietrich S, Glimm H, Andrulis M, et al. BRAF inhibition in refractory hairy-cell leukemia. N Engl J Med. 2012;366(21):2038– 2040.
44. Follows GA, Sims H, Bloxham DM, et al. Rapid response of biallelic BRAF V600E mutated hairy cell leukaemia to low dose vemurafenib. Br J Haematol. 2013;161(1): 150–153.
45. Shi H, Hugo W, Kong X, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4(1):80–93.
46. Kordes M, Röring M, Heining C, et al. Cooperation of BRAF(F595L) and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Leukemia. 2016;30(4):937-946.
47. Yaktapour N, Meiss F, Mastroianni J, et al. BRAF inhibitor-associated ERK activation drives development of chronic lymphocytic leukemia. J Clin Invest. 2014;124(11):5074– 5084.
48. Ryan MB, Der CJ, Wang-Gillam A, Cox AD. Targeting RAS-mutant cancers: Is ERK the key? Trends Cancer. 2015;1(3):183–198.
49. Sullivan RJ, Infante JR, Janku F, et al. First-in- class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-esca- lation and expansion study. Cancer Discov. 2018;8(2):184-195.
50. Dietrich S, Oleś M, Lu J, et al. Drug-pertur- bation-based stratification of blood cancer. J Clin Invest. 2018;128(1):427-445.
haematologica | 2019; 104(3)
586