Page 109 - 2019_03-Haematologica-web
P. 109

Atypical TG2 expression activates the NF-κB pathway
References
1. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the Classification of the Acute Leukaemias French-American-British (FAB) Co-operative Group. Br J Haematol. 1976;33(4):451-458.
2. Bennett J, Catovsky D, Daniel M, et al. A variant form of hypergranular promyelo- cytic leukemia (M3). Ann Intern Med. 1980;92:261.
3. Bennet J. Proposed revised criteria for the classification of acute leukemia: A report
from the French-American-British Cooperative Group. Ann Intern Med. 1985; 3:620-625.
4. Arber DA. Realistic pathologic classifica- tion of acute myeloid leukemias. Am J Clin Pathol. 2001;115(4):552-560.
5. Kühnl A, Grimwade D. Molecular markers in acute myeloid leukaemia. Int J Hematol. 2012;96(2):153-163.
6. Wiernik PH, Gallagher RE, Tallman MS. Acute promyelocytic leukemia. Neoplastic Diseases of the Blood: Springer, 2013:403- 453.
7. Grignani F, Ferrucci PF, Testa U, et al. The acute promyelocytic leukemia-specific PML-RAR fusion protein inhibits differen- tiation and promotes survival of myeloid precursor cells. Cell. 1993;74(3):423-431.
8. Kogan SC, Hong SH, Shultz DB, et al. Leukemia initiated by PMLRAR : the PML domain plays a critical role while retinoic acid–mediated transactivation is dispensa- ble. Blood. 2000;95(5):1541-1550.
9. AblainJ.Revisitingthedifferentiationpara- digm in acute promyelocytic leukemia. Blood. 2011;117(22):5795-5802.
10. Breitman T, Collins SJ, Keene B. Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood. 1981; 57(6):1000-1004.
11. Raelson JV, Nervi C, Rosenauer A, et al. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood. 1996;88(8):2826-2832.
12. Fenaux P, Wang Z, Degos L. Treatment of acute promyelocytic leukemia by retinoids. Acute Promyelocytic Leukemia: Springer, 2007:101-128.
13. Montesinos P, Sanz MA. The differentia- tion syndrome in patients with acute promyelocytic leukemia: experience of the pethema group and review of the literature. Mediterr J Hematol Infect Dis. 2011; 3(1):e2011059.
14. Patatanian E, Thompson D. Retinoic acid syndrome: a review. J Clin Pharm Ther. 2008;33(4):331-338.
15. LuesinkM,PenningsJL,WissinkWM,etal. Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promye- locytic leukemia: triggering the differentia- tion syndrome. Blood. 2009;114(27):5512- 5521.
16. Montesinos P, Bergua JM, Vellenga E, et al.
Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors. Blood. 2009; 113(4):775-783.
17. Yoshida H, Kitamura K, Tanaka K, et al. Accelerated degradation of PML-retinoic acid receptor (PML-RARA) oncoprotein by all-trans-retinoic acid in acute promye- locytic leukemia: possible role of the pro- teasome pathway. Cancer Res. 1996;56(13):2945-2948.
18. Lanotte M, Martin-Thouvenin V, Najman S, et al. NB4, a maturation inducible cell line with t (15; 17) marker isolated from a human acute promyelocytic leukemia (M3). Blood. 1991;77(5):1080-1086.
19. Tallman MS, Andersen JW, Schiffer CA, et al. Clinical description of 44 patients with acute promyelocytic leukemia who devel- oped the retinoic acid syndrome. Blood. 2000;95(1):90-95.
20. Balajthy Z, Csomós K, Vámosi G, et al. Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions. Blood. 2006;108(6):2045-2054.
21. Csomós K, Német I, Fésüs L, et al. Tissue transglutaminase contributes to the all- trans-retinoic acid–induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia. Blood. 2010;116(19):3933-3943.
22. Fesus L, Piacentini M. Transglutaminase 2: an enigmatic enzyme with diverse func- tions. Trends Biochem Sci. 2002; 27(10):534-539.
23. Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol. 2003; 4(2):140-156.
24. Eckert RL, Fisher ML, Grun D, et al. Transglutaminase is a tumor cell and cancer stem cell survival factor. Mol Carcinog. 2015;54(10):947-958.
25. Kerr C, Szmacinski H, Fisher ML, et al. Transamidase site-targeted agents alter the conformation of the transglutaminase can- cer stem cell survival protein to reduce GTP binding activity and cancer stem cell sur- vival. Oncogene. 2017;36(21):2981-2990.
26. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503-3521.
27. Sadhu C, Hendrickson L, Dick KO et al. Novel Tools for Functional Analysis of CD11c: Activation-Specific, Activation- Independent, and Activating Antibodies. J Immunoassay Immunochem. 2007; 29(1):42-57.
28. Boston University Biology. 2018. Target Genes of NF-kB. [ONLINE] Available at: https://www.bu.edu/nf-kb/gene- resources/target-genes/. [Last accessed 15 May 2018]
29. Caron NS, Munsie LN, Keillor JW, et al. Using FLIM-FRET to measure conforma- tional changes of transglutaminase type 2 in live cells. PloS One. 2012;7(8):e44159.
30. Keillor JW, Chica RA, Chabot N, et al. The bioorganic chemistry of transglutaminase: from mechanism to inhibition and engi- neering. Can J Chem. 2008;86(4):271-276.
31. Harada A, Sekido N, Akahoshi T, et al. Essential involvement of interleukin-8 (IL- 8) in acute inflammation. J Leukoc Biol. 1994;56(5):559-564.
32. Shibakura M, Niiya K, Niiya M, et al. Induction of CXC and CC chemokines by all-trans retinoic acid in acute promyelocyt- ic leukemia cells. Leuk Res. 2005;29(7):755- 759.
33. Tsai W-H, Hsu H-C, Lin C-C et, al. Role of interleukin-8 and growth-regulated onco- gene- in the chemotactic migration of all- trans retinoic acid-treated promyelocytic leukemic cells toward alveolar epithelial cells. Crit Care Med. 2007;35(3):879-885.
34. Detmers PA, Lo SK, Olsen-Egbert E, et al. Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J Exp Med.1990;171(4):1155-1162.
35. Takami M1, Terry V, Petruzzelli L. Signaling pathways involved in IL-8-depen- dent activation of adhesion through Mac-1. J Immunol. 2002;168(9):4559-4566.
36. Loike JD, Sodeik B, Cao L, et al. CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci. 1991;88(3):1044-1048.
37. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503-3521.
38. Frankel SR, Eardley A, Lauwers G, et al. The “retinoic acid syndrome” in acute promyelocytic leukemia. Ann Intern Med. 1992;117(4):292-296.
39. Bainton DF, Miller LJ, Kishimoto T, et al. Leukocyte adhesion receptors are stored in peroxidase-negative granules of human neutrophils. J Exp Med. 1987;166(6):1641- 1653.
40. Nupponen I, Andersson S, Järvenpää A-L, et al. Neutrophil CD11b expression and cir- culating interleukin-8 as diagnostic markers for early-onset neonatal sepsis. Pediatrics. 2001;108(1):E12.
41. Tang L, Chai W, Ye F, et al. HMGB1 pro- motes differentiation syndrome by induc- ing hyperinflammation via MEK/ERK sig- naling in acute promyelocytic leukemia cells. Oncotarget. 2017;8(16):27314-27327.
42. Kumar S, Mehta K. Tissue transglutaminase constitutively activates HIF-1 promoter and nuclear factor- B via a non-canonical pathway. PloS One. 2012;7(11):e49321.
43. Flombaum CD, Isaacs M, Reich L, et al. Acute renal failure associated with the retinoic acid syndrome in acute promyelo- cytic leukemia. Am J Kidney Dis. 1996; 27(1):134-137.
44. Mitrovic M, Suvajdzic N, Elezovic I, et al. Thrombotic events in acute promyelocytic leukemia. Thromb Res. 2015;135(4):588- 593.
haematologica | 2019; 104(3)
515


































































































   107   108   109   110   111