Page 141 - Haematologica-5
P. 141

WGS in MBL and ultra-stable CLL
21. Landgren O, Albitar M, Ma W, et al. B-cell clones as early markers for chronic lym- phocytic leukemia. N Engl J Med. 2009; 360(7):659-667.
22. Marti GE, Rawstron AC, Ghia P, et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol. 2005; 130(3):325-332.
23. Dagklis A, Fazi C, Scarfo L, et al. Monoclonal B lymphocytosis in the general population. Leuk Lymphoma. 2009; 50(3):490-492.
24. Ghia P, Prato G, Scielzo C, et al. Monoclonal CD5+ and CD5- B-lympho- cyte expansions are frequent in the periph- eral blood of the elderly. Blood. 2004; 103(6):2337-2342.
25. Rawstron AC, Bennett FL, O'Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359(6):575-583.
26. Fazi C, Scarfo L, Pecciarini L, et al. General population low-count CLL-like MBL per- sists over time without clinical progression, although carrying the same cytogenetic abnormalities of CLL. Blood. 2011; 118(25):6618-6625.
27. Matos DM, Furtado FM, Falcao RP. Monoclonal B-cell lymphocytosis in indi- viduals from sporadic (non-familial) chron- ic lymphocytic leukemia families persists over time, but does not progress to chronic B-cell lymphoproliferative diseases. Rev Bras Hematol Hemoter. 2015;37(5):292- 295.
28. Rasi S, Monti S, Spina V, et al. Analysis of NOTCH1 mutations in monoclonal B-cell lymphocytosis. Haematologica. 2012; 97(1):153-154.
29. Imielinski M, Guo G, Meyerson M. Insertions and Deletions Target Lineage- Defining Genes in Human Cancers. Cell. 2017;168(3):460-472 e414.
30. Kreutzer DA, Essigmann JM. Oxidized,
deaminated cytosines are a source of C --> T transitions in vivo. Proc Natl Acad Sci USA. 1998;95(7):3578-3582.
31. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016; 44(W1):W90-97.
32. Damm F, Mylonas E, Cosson A, et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 2014;4(9):1088-1101.
33. Blokzijl FJ, R.; van Boxtel, R.; Cuppen, E. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. bioRxiv 071761; doi: https:// doi.org/10.1101/071761.
34. Baliakas P, Hadzidimitriou A, Sutton LA, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29(2):329-336.
35. Sutton LA, Young E, Baliakas P, et al. Different spectra of recurrent gene muta- tions in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica. 2016;101(8):959- 967.
36. Lionetti M, Fabris S, Cutrona G, et al. High- throughput sequencing for the identifica- tion of NOTCH1 mutations in early stage chronic lymphocytic leukaemia: biological and clinical implications. Br J Haematol. 2014;165(5):629-639.
37. Zhang J, Baran J, Cros A, et al. International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data. Database (Oxford). 2011;2011:bar026.
38. Strefford JC, Sutton LA, Baliakas P, et al. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia. 2013; 27(11):2196-2199.
39. Jeromin S, Weissmann S, Haferlach C, et al.
SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 2014;28(1):108- 117.
40. Wilda M, Bruch J, Harder L, et al. Inactivation of the ARF-MDM-2-p53 path- way in sporadic Burkitt's lymphoma in children. Leukemia. 2004;18(3):584-588.
41. Fu Y, Liu Z, Lou S, et al. FunSeq2: a frame- work for prioritizing noncoding regulatory variants in cancer. Genome Biol. 2014; 15(10):480.
42. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chron- ic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910-1916.
43. Nguyen DQ, Webber C, Ponting CP. Bias of selection on human copy-number variants. PLoS Genet. 2006;2(2):e20.
44. Hurtado AM, Chen-Liang TH, Przychodzen B, et al. Prognostic signature and clonality pattern of recurrently mutat- ed genes in inactive chronic lymphocytic leukemia. Blood Cancer J. 2015;5:e342.
45. Ojha J, Ayres J, Secreto C, et al. Deep sequencing identifies genetic heterogeneity and recurrent convergent evolution in chronic lymphocytic leukemia. Blood. 2015;125(3):492-498.
46. Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated sub- clones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139-2147.
47. Khodabakhshi AH, Morin RD, Fejes AP, et al. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget. 2012;3(11):1308-1319.
48. Oakes CC, Seifert M, Assenov Y, et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nature Genetics. 2016;48(3):253- 264.
haematologica | 2018; 103(5)
873


































































































   139   140   141   142   143