Page 143 - Haematologica-April 2018
P. 143
Histone modifier gene mutations in PTCL-NOS
Nat Rev Drug Discov. 2014;13(9):673-691.
20. Shi Y, Jia B, Xu W, et al. Chidamide in relapsed or refractory peripheral T cell lym- phoma: a multicenter real-world study in
China. J Hematol Oncol. 2017;10(1):69.
21. Wozniak MB, Villuendas R, Bischoff JR, et al. Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma.
Haematologica. 2010;95(4):613-621.
22. Popovic R, Licht JD. Emerging epigenetic targets and therapies in cancer medicine.
Cancer Discov. 2012;2(5):405-413.
23. Stamatopoulos B, Meuleman N, De Bruyn C, Delforge A, Bron D, Lagneaux L. The his- tone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis, down- regulates the CXCR4 chemokine receptor and impairs migration of chronic lympho- cytic leukemia cells. Haematologica.
2010;95(7):1136-1143.
24. Jiang Y, Ortega-Molina A, Geng H, et al.
CREBBP inactivation promotes the develop- ment of HDAC3-dependent lymphomas. Cancer Discov. 2017;7(1):38-53.
25. Andersen CL, Asmar F, Klausen T, Hasselbalch H, Gronbaek K. Somatic muta- tions of the CREBBP and EP300 genes affect
response to histone deacetylase inhibition in malignant DLBCL clones. Leuk Res Rep. 2012;2(1):1-3.
26. Marchi E, Zullo KM, Amengual JE, et al. The combination of hypomethylating agents and histone deacetylase inhibitors produce marked synergy in preclinical models of T- cell lymphoma. Br J Haematol. 2015. doi: 10.1111/bjh.13566. [Epub ahead of print]
27. Kalac M, Scotto L, Marchi E, et al. HDAC inhibitors and decitabine are highly syner- gistic and associated with unique gene- expression and epigenetic profiles in models of DLBCL. Blood. 2011;118(20):5506-5516.
28. Ortega-Molina A, Boss IW, Canela A, et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma develop- ment. Nat Med. 2015;21(10):1199-1208.
29. Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 2015;21(10): 1190-1198.
30. Jones CL, Gearheart CM, Fosmire S, et al. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood. 2015;126(19): 2202-2212.
31. Chakraborty AR, Robey RW, Luchenko VL, et al. MAPK pathway activation leads to Bim loss and histone deacetylase inhibitor resistance: rationale to combine romidepsin with an MEK inhibitor. Blood. 2013;121(20): 4115-4125.
32. Huang G, Zhang P, Hirai H, et al. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat Genet. 2008;40(1):51-60.
33. Rosenbauer F, Owens BM, Yu L, et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet. 2006;38(1):27-37.
34. Will B, Vogler TO, Narayanagari S, et al. Minimal PU.1 reduction induces a preleukemic state and promotes develop- ment of acute myeloid leukemia. Nat Med. 2015;21(10):1172-1181.
35. Iseki Y, Nakahara M, Kubo M, Obata F, Harigae H, Takahashi S. Correlation of PU.1 and signal regulatory protein alpha1 expres- sion in PU.1 transgenic K562 cells. Int J Mol Med. 2012;29(2):319-323.
36. van Riel B, Rosenbauer F. Epigenetic control of hematopoiesis: the PU.1 chromatin con- nection. Biol Chem. 2014;395(11):1265- 1274.
haematologica | 2018; 103(4)
687