Page 77 - Haematologica3
P. 77

SAMD9L-related familial MDS
cation of the myeloid neoplasms. Blood.
2002;100(7):2292-2302.
26. Kircher M, Witten DM, Jain P, O'Roak BJ,
Cooper GM, Shendure J. A general frame- work for estimating the relative pathogenic- ity of human genetic variants. Nat Genet. 2014;46(3):310-315.
27. Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974;185(4154):862-864.
28. Wlodarski MW, O'Keefe C, Howe EC, et al. Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell-receptor restriction in large granular lymphocyte leukemia. Blood. 2005;106(8):2769-2780.
29. Vraetz T, Emanuel PD, Niemeyer CM. In vitro regulation of colony stimulating factor- mediated hematopoiesis in healthy individ- uals and patients with different types of myeloproliferative disease. Methods Mol Biol. 2003;215:293-309.
30. Lemos de Matos A, Liu J, McFadden G, Esteves PJ. Evolution and divergence of the mammalian SAMD9/SAMD9L gene family. BMC Evol Biol. 2013;13:121.
31. Chefetz I, Ben Amitai D, Browning S, et al. Normophosphatemic familial tumoral calci- nosis is caused by deleterious mutations in SAMD9, encoding a TNF-alpha responsive protein. J Invest Dermatol. 2008;128(6): 1423-1429.
32. Tanaka M, Shimbo T, Kikuchi Y, Matsuda M, Kaneda Y. Sterile alpha motif contain- ing domain 9 is involved in death signaling of malignant glioma treated with inactivat- ed Sendai virus particle (HVJ-E) or type I interferon. Int J Cancer. 2010;126(8):1982- 1991.
33. Hershkovitz D, Gross Y, Nahum S, et al. Functional characterization of SAMD9, a protein deficient in normophosphatemic familial tumoral calcinosis. J Invest Dermatol. 2011;131(3):662-669.
34. Liu J, Wennier S, Zhang L, McFadden G. M062 is a host range factor essential for myxoma virus pathogenesis and functions as an antagonist of host SAMD9 in human cells. J Virol. 2011;85(7):3270-3282.
35. Jongmans MCJ, Verwiel ETP, Heijdra Y, et al. Revertant somatic mosaicism by mitotic
recombination in dyskeratosis congenita.
Am J Hum Genet. 2012;90(3):426-433.
36. Waisfisz Q, Morgan NV, Savino M, et al. Spontaneous functional correction of homozygous fanconi anaemia alleles reveals novel mechanistic basis for reverse
mosaicism. Nat Genet. 1999;22(4):379-383. 37. Reina-Castillon J, Pujol R, Lopez-Sanchez M, et al. Detectable clonal mosaicism in blood as a biomarker of cancer risk in Fanconi anemia. Blood Advances. 2017;1(5):
319-329.
38. Nagasawa M, Tomizawa D, Tsuji Y, et al.
Pancytopenia presenting with monosomy 7 which disappeared after immunosuppres- sive therapy. Leuk Res. 2004;28(3):315-319.
39. Benaim E, Hvizdala EV, Papenhausen P, Moscinski LC. Spontaneous remission in monosomy 7 myelodysplastic syndrome. Br J Haematol. 1995;89(4):947-948.
40. Scheurlen W, Borkhardt A, Ritterbach J, Huppertz HI. Spontaneous hematological remission in a boy with myelodysplastic syndrome and monosomy 7. Leukemia. 1994;8(8):1435-1438.
haematologica | 2018; 103(3)
437


































































































   75   76   77   78   79