Page 45 - Haematologica3
P. 45

Modeling human erythroid-macrophage interactions
cells, but do require direct interaction with insulin-like growth factor I and/or insulin for erythroid development. J Clin Invest. 1989;83(5):1701-1709.
7. Chow A, Lucas D, Hidalgo A, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208(2):261-271.
8. Chow A, Huggins M, Ahmed J, et al. CD169(+) macrophages provide a niche promoting erythropoiesis under homeosta- sis and stress. Nat Med. 2013;19(4):429- 436.
9. Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116(23):4815-4828.
10. Heideveld E, van den Akker E. Digesting the role of bone marrow macrophages on hematopoiesis. Immunobiology. 2017; 222(6):814-822.
11. Iavarone A, King ER, Dai XM, Leone G, Stanley ER, Lasorella A. Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages. Nature. 2004;432(7020):1040-1045.
12. Heideveld E, Masiello F, Marra M, et al. CD14+ cells from peripheral blood posi- tively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield. Haematologica. 2015;100(11):1396-1406.
13. Belay E, Hayes BJ, Blau CA, Torok-Storb B. Human cord blood and bone marrow CD34+ cells generate macrophages that support erythroid islands. PLoS One. 2017; 12(1):e0171096.
14. Ramos P, Casu C, Gardenghi S, et al. Macrophages support pathological erythro- poiesis in polycythemia vera and beta-tha- lassemia. Nat Med. 2013;19(4):437-445.
15. Jacobsen RN, Perkins AC, Levesque JP. Macrophages and regulation of erythro- poiesis. Curr Opin Hematol. 2015;22(3):212-219.
16. Sadahira Y, Yoshino T, Monobe Y. Very late activation antigen 4-vascular cell adhesion molecule 1 interaction is involved in the formation of erythroblastic islands. J Exp Med. 1995;181(1):411-415.
17. Ulyanova T, Phelps SR, Papayannopoulou T. The macrophage contribution to stress erythropoiesis: when less is enough. Blood. 2016;128(13):1756-1765.
18. Toda S, Segawa K, Nagata S. MerTK-medi- ated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood. 2014;123(25):3963-3971.
19. Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S. Phosphatidylserine- dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature. 2005;437(7059):754-758.
20. Lu Q, Lemke G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science. 2001;293(5528):306-311.
21. Gaipl US, Voll RE, Sheriff A, Franz S, Kalden JR, Herrmann M. Impaired clear- ance of dying cells in systemic lupus ery- thematosus. Autoimmun Rev. 2005;4(4):189-194.
22. Munoz LE, Janko C, Schulze C, et al.
Autoimmunity and chronic inflammation - two clearance-related steps in the etiopathogenesis of SLE. Autoimmun Rev. 2010;10(1):38-42.
23. Nagata S. Apoptosis and autoimmune dis- eases. Ann N Y Acad Sci. 2010;1209:10-16. 24. Rothlin CV, Lemke G. TAM receptor sig- naling and autoimmune disease. Curr Opin
Immunol. 2010;22(6):740-746.
25. Toda S, Nishi C, Yanagihashi Y, Segawa K,
Nagata S. Clearance of apoptotic cells and pyrenocytes. Curr Top Dev Biol. 2015; 114:267-295.
26. Ciudad MT, Sorvillo N, van Alphen FP, et al. Analysis of the HLA-DR peptidome from human dendritic cells reveals high affinity repertoires and nonconventional pathways of peptide generation. J Leukoc Biol. 2017;101(1):15-27.
27. Vogt L, Schmitz N, Kurrer MO, et al. VSIG4, a B7 family-related protein, is a neg- ative regulator of T cell activation. J Clin Invest. 2006;116(10):2817-2826.
28. Finn AV, Nakano M, Polavarapu R, et al. Hemoglobin directs macrophage differenti- ation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol. 2012;59(2):166-177.
29. Krause SW, Rehli M, Kreutz M, Schwarzfischer L, Paulauskis JD, Andreesen R. Differential screening identi- fies genetic markers of monocyte to macrophage maturation. J Leukoc Biol. 1996;60(4):540-545.
30. Libreros S, Garcia-Areas R, Keating P, Carrio R, Iragavarapu-Charyulu VL. Exploring the role of CHI3L1 in "pre- metastatic" lungs of mammary tumor-bear- ing mice. Front Physiol. 2013;4:392.
31. Hoban MD, Cost GJ, Mendel MC, et al. Correction of the sickle cell disease muta- tion in human hematopoietic stem/progen- itor cells. Blood. 2015;125(17):2597-2604.
32. Ulyanova T, Scott LM, Priestley GV, et al. VCAM-1 expression in adult hematopoiet- ic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood. 2005; 106(1):86-94.
33. Lee G, Lo A, Short SA, et al. Targeted gene deletion demonstrates that the cell adhe- sion molecule ICAM-4 is critical for ery- throblastic island formation. Blood. 2006; 108(6):2064-2071.
34. Ulyanova T, Jiang Y, Padilla S, Nakamoto B, Papayannopoulou T. Combinatorial and distinct roles of alpha(5) and alpha(4) inte- grins in stress erythropoiesis in mice. Blood. 2011;117(3):975-985.
35. Soni S, Bala S, Hanspal M. Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis. Blood Cells Mol Dis. 2008;41(2):141-147.
36. Suenobu S, Takakura N, Inada T, et al. A role of EphB4 receptor and its ligand, ephrin-B2, in erythropoiesis. Biochem Biophys Res Commun. 2002;293(3):1124- 1131.
37. Ocana-Guzman R, Torre-Bouscoulet L, Sada-Ovalle I. TIM-3 regulates distinct functions in macrophages. Front Immunol. 2016;7:229.
38. D'Souza S, Park SY, Kim IS. Stabilin-2 acts as an engulfment receptor for the phos- phatidylserine-dependent clearance of pri-
mary necrotic cells. Biochem Biophys Res
Commun. 2013;432(3):412-417.
39. Simhadri VR, Andersen JF, Calvo E, Choi SC, Coligan JE, Borrego F. Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood. 2012;
119(12):2799-2809.
40. Dasgupta SK, Abdel-Monem H, Guchhait
P, Nagata S, Thiagarajan P. Role of lactad- herin in the clearance of phosphatidylser- ine-expressing red blood cells. Transfusion. 2008;48(11):2370-2376.
41. Kawane K, Fukuyama H, Kondoh G, et al. Requirement of DNase II for definitive ery- thropoiesis in the mouse fetal liver. Science. 2001;292(5521):1546-1549.
42. Humpeler E, Skrabal F, Bartsch G. Influence of exposure to moderate altitude on the plasma concentraton of cortisol, aldos- terone, renin, testosterone, and gonadotropins. Eur J Appl Physiol Occup Physiol. 1980;45(2-3):167-176.
43. van den Akker E, Satchwell TJ, Pellegrin S, Daniels G, Toye AM. The majority of the in vitro erythroid expansion potential resides in CD34- cells, outweighing the contribution of CD34+ cells and signifi- cantly increasing the erythroblast yield from peripheral blood samples. Haematologica. 2010;95(9):1594-1598.
44. Leberbauer C, Boulme F, Unfried G, Huber J, Beug H, Mullner EW. Different steroids co-regulate long-term expansion versus ter- minal differentiation in primary human erythroid progenitors. Blood. 2005; 105(1):85-94.
45. von Lindern M, Deiner EM, Dolznig H, et al. Leukemic transformation of normal murine erythroid progenitors: v- and c- ErbB act through signaling pathways acti- vated by the EpoR and c-Kit in stress ery- thropoiesis. Oncogene. 2001;20(28):3651- 3664.
46. Bauer A, Tronche F, Wessely O, et al. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 1999; 13(22):2996-3002.
47. Falchi M, Varricchio L, Martelli F, et al. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion. Haematologica. 2015;100(2):178-187.
48. Yokoyama T, Kitagawa H, Takeuchi T, Tsukahara S, Kannan Y. No apoptotic cell death of erythroid cells of erythroblastic islands in bone marrow of healthy rats. J Vet Med Sci. 2002;64(10):913-919.
49. Yokoyama T, Etoh T, Kitagawa H, Tsukahara S, Kannan Y. Migration of ery- throblastic islands toward the sinusoid as erythroid maturation proceeds in rat bone marrow. J Vet Med Sci. 2003;65(4):449-452.
50. van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968;128(3):415-435.
51. Hashimoto D, Chow A, Noizat C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792-804.
52. Theurl I, Hilgendorf I, Nairz M, et al. On- demand erythrocyte disposal and iron recy- cling requires transient macrophages in the liver. Nat Med. 2016;22(8):945-951.
haematologica | 2018; 103(3)
405


































































































   43   44   45   46   47