Page 105 - Haematologica3
P. 105

Prediction of primary resistant AML
References
1. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommenda- tions from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453-474.
2. Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017; 129(4):424-447.
3. Walter RB, Othus M, Burnett AK, et al. Resistance prediction in AML: analysis of
4601 patients from MRC/NCRI, HOVON/SAKK, SWOG and MD Anderson Cancer Center. Leukemia. 2015; 29(2):312-320.
4. Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21(24):4642-4649.
5. Ferguson P, Hills RK, Grech A, et al. An operational definition of primary refracto- ry acute myeloid leukemia allowing early identification of patients who may bene- fit from allogeneic stem cell transplanta- tion. Haematologica. 2016;101(11):1351- 1358.
6. Walter RB, Othus M, Paietta EM, et al. Effect of genetic profiling on prediction of therapeutic resistance and survival in adult acute myeloid leukemia. Leukemia. 2015; 29(10):2104-2107.
7. Krug U, Rollig C, Koschmieder A, et al. Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: a web-based application for prediction of outcomes. Lancet. 2010; 376(9757):2000-2008.
8. Dohner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373(12):1136-1152.
9. Buchner T, Krug UO, Peter Gale R, et al. Age, not therapy intensity, determines out- comes of adults with acute myeloid leukemia. Leukemia. 2016;30(8):1781-1784.
10. Buchner T, Berdel WE, Schoch C, et al. Double induction containing either two courses or one course of high-dose cytara- bine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged mainte- nance for acute myeloid leukemia. J Clin Oncol. 2006;24(16):2480-2489.
11. Herold T, Metzeler KH, Vosberg S, et al. Isolated trisomy 13 defines a homogeneous AML subgroup with high frequency of mutations in spliceosome genes and poor prognosis. Blood. 2014;124(8):1304-1311.
12. LiZ,HeroldT,HeC,etal.Identificationof a 24-gene prognostic signature that
improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study. J Clin Oncol. 2013;31(9):1172-1181.
13. Wouters BJ, Lowenberg B, Erpelinck- Verschueren CA, van Putten WL, Valk PJ, Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a sub- group of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable out- come. Blood. 2009;113(13):3088-3091.
14. Taskesen E, Bullinger L, Corbacioglu A, et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood. 2011;117(8):2469-2475.
15. Braess J, Kreuzer K-A, Spiekermann K, et al. High Efficacy and Significantly Shortened Neutropenia Of Dose-Dense S-HAM As Compared To Standard Double Induction: First Results Of a Prospective Randomized Trial (AML-CG 2008). Blood. 2013;122(21):619-619.
16. Greif PA, Dufour A, Konstandin NP, et al. GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define a unique genetic entity of acute myeloid leukemia. Blood. 2012;120(2):395-403.
17. Metzeler KH, Herold T, Rothenberg- Thurley M, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128(5):686- 698.
24. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-2221.
25. Ng SW, Mitchell A, Kennedy JA, et al. A 17- gene stemness score for rapid determina- tion of risk in acute leukaemia. Nature. 2016;540(7633):433-437.
26. Marcucci G, Maharry KS, Metzeler KH, et al. Clinical role of microRNAs in cytogenet- ically normal acute myeloid leukemia: miR- 155 upregulation independently identifies high-risk patients. J Clin Oncol. 2013; 31(17):2086-2093.
27. Khalife J, Radomska HS, Santhanam R, et al. Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3- ITD acute myeloid leukemia. Leukemia. 2015;29(10):1981-1992.
28. Thol F, Schlenk RF, Heuser M, Ganser A. How I treat refractory and early relapsed acute myeloid leukemia. Blood. 2015; 126(3):319-327.
29. Welch JS, Petti AA, Miller CA, et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med. 2016;375(21):2023-2036.
30. Iacobucci I, Lonetti A, Candoni A, et al. Profiling of drug-metabolizing enzymes/transporters in CD33+ acute myeloid leukemia patients treated with Gemtuzumab-Ozogamicin and Fludarabine, Cytarabine and Idarubicin. Pharmacogenomics J. 2013;13(4):335-341.
31. Zevin S, Benowitz NL. Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999;36(6):425-438.
32. Gerstung M, Papaemmanuil E, Martincorena I, et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet. 2017;49(3):332-
18. ENCODE Consortium. Standards,
Guidelines and Best Practices for RNA-Seq
v.1.0. June 2011. [Available from: https://genome.ucsc.edu/encode/proto- cols/dataStandards/ENCODE_RNAseq_St andards_V1.0.pdf. Last accessed: 31st 340.
January 2018].
19. Dobin A, Davis CA, Schlesinger F, et al.
STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013;29(1):15-21.
20. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014;15(12):550.
21. Herold T, Jurinovic V, Metzeler KH, et al.
An eight-gene expression signature for the prediction of survival and time to treatment in chronic lymphocytic leukemia. Leukemia. 2011;25(10):1639-1645.
22. Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354-365.
23. TCGA. Genomic and epigenomic land- scapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368(22): 2059-2074.
33. Gaidzik VI, Paschka P, Spath D, et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol. 2012; 30(12):1350-1357.
34. Pabst C, Bergeron A, Lavallee VP, et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopu- lating potential in vivo. Blood. 2016; 127(16):2018-2027.
35. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017; 129(4):424-447.
36. Wang M, Lindberg J, Klevebring D, et al. Validation of risk stratification models in acute myeloid leukemia using sequencing- based molecular profiling. Leukemia. 2017;31(10):2029-2036.
37. Ng SW, Mitchell A, Kennedy JA, et al. A 17- gene stemness score for rapid determina- tion of risk in acute leukaemia. Nature. 2016;540(7633):433-437.
haematologica | 2018; 103(3)
465


































































































   103   104   105   106   107