Page 153 - 2020_08-Haematologica-web
P. 153

EVI1 triggers metabolic reprogramming
the underlying mechanism is unclear.33 AML showing high EVI1 expression is often accompanied by monosomy 7. Reduced expression of ASNS in AML with monosomy 7 is caused by haplodeletion of chromosome 7, making it highly sensitive to L-asp.34 Here, since EVI1+ AML showed high sensitivity to L-asp despite its low glutamine depend- ence, it is likely that monosomy 7 is involved. Furthermore, we clarified that increased glutamine dependency by MF9 AML cells showing high EVI1 expres- sion and low ASNS expression makes them sensitive to L- asp. Blockade of the creatine kinase pathway, which is essential for mitochondrial respiration, reduces glutamate levels in EVI1+ AML cells.14 Future studies should examine whether expression of ASNS by refractory MLL-r AML may increase the therapeutic potential of L-asp and improve treatment outcomes.
In conclusion, we found that the energy advantage of AML cells is acquired via transcription factor-mediated activation of mitochondrial metabolism, leading to a poor prognosis. Furthermore, we show that new therapeutic options can be identified by examining the energy-based metabolic characteristics of leukemia cells.
Funding
This research was supported by JSPS KAKENHI Grants (Number JP.16K19581 and AMED under Grant Number JP. 17cm0106126h0002) and grants from the Takeda Science Foundation, the Friends of Leukemia Research Fund, The Shinnihon Foundation of Advanced Medical Treatment Research, and the Japanese Society of Hematology Research. Microarray data have been deposited in the Gene Expression Omnibus (GSE118096). The authors have no conflicts of interest to declare.
References
1. Muntean AG, Hess JL. The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol. 2012;7:283-301.
2. Balgobind BV, Zwaan CM, Pieters R, Van den Heuvel-Eibrink MM. The heterogene- ity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia. 2011;25(8): 1239-1248.
3. Morishita K, Parker DS, Mucenski ML, et al. Retroviral activation of a novel gene encod- ing a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell. 1988; 54(6):831-840.
4. Morishita K, Parganas E, William CL, et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300-400 kilobases on chromosome band 3q26. Proc Natl Acad Sci U S A. 1992;89(9):3937-3941.
5. Lugthart S, Gröschel S, Beverloo HB, et al. Clinical, molecular, and prognostic signifi- cance of WHO type inv(3)(q21q26.2)/t(3;3) (q21;q26.2) and various other 3q abnormali- ties in acute myeloid leukemia. J Clin Oncol. 2010;28(24):3890-3898.
6. Gröschel S, Schlenk RF, Engelmann J, et al. Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a study of the German-Austrian Acute Myeloid Leukemia Study Group and the Dutch-Belgian-Swiss HOVON/SAKK Cooperative Group. J Clin Oncol. 2013;31(1):95-103.
7. Matsuo H, Kajihara M, Tomizawa D, et al. EVI1 overexpression is a poor prognostic factor in pediatric patients with mixed line- age leukemia-AF9 rearranged acute myeloid leukemia. Haematologica. 2014;99(11):e225- 227.
8. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression pro- files in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617-1628.
9. Verhaak RG, Wouters BJ, Erpelinck CA, et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica. 2009;94(1):131- 134.
10. Saito Y, Nakahata S, Yamakawa N, et al. CD52 as a molecular target for immunother- apy to treat acute myeloid leukemia with high EVI1 expression. Leukemia. 2011; 25(6):921-931.
11. Saito Y, Kaneda K, Suekane A, et al. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regu- lated GPR56. Leukemia. 2013;27(8):1637- 1649.
12. Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminoly- sis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782- 18787.
13. Cantor JR, Sabatini DM. Cancer cell metab- olism: one hallmark, many faces. Cancer Discov. 2012;2(10):881-898.
14. Fenouille N, Bassil CF, Ben-Sahra I, et al. The creatine kinase pathway is a metabolic vul- nerability in EVI1-positive acute myeloid leukemia. Nat Med. 2017;23(3):301-313.
15. Zhang Y, Owens K, Hatem L, et al. Essential role of PR-domain protein MDS1-EVI1 in MLL-AF9 leukemia. Blood. 2013;122(16): 2888-2892.
16. Stavropoulou V, Kaspar S, Brault L, et al. MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell. 2016;30 (1):43- 58.
17. Ng CE, Yokomizo T, Yamashita N, et al. A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells. Stem Cells. 2010;28(10):1869-1881.
18. Saito Y, Chapple RH, Lin A, Kitano A, Nakada D. AMPK Protects Leukemia- Initiating Cells in Myeloid Leukemias from Metabolic Stress in the Bone Marrow. Cell Stem Cell. 2015;17(5):585-596.
19. Krivtsov AV, Armstrong SA. MLL transloca- tions, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7(11):823-833.
20. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006;10(4):257-268.
21. Farge T, Saland E, de Toni F, et al. Chemotherapy-resistant human acute myeloid Leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017;7(7):716- 735.
22. Kuntz EM, Baquero P, Michie AM, et al. Targeting mitochondrial oxidative phospho- rylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23(10):1234-1240.
23. Hirayama A, Kami K, Sugimoto M, et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009;69(11): 4918-4925.
24. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-1033.
25. Ju HQ, Zhan G, Huang A, et al. ITD muta- tion in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sen- sitivity to glycolytic inhibition. Leukemia. 2017;31(10):2143-2150.
26. Poulain L, Sujobert P, Zylbersztejn F, et al. High mTORC1 activity drives glycolysis addiction and sensitivity to G6PD inhibition in acute myeloid leukemia cells. Leukemia. 2017;31(11):2326-2335.
27. Wang YH, Israelsen WJ, Lee D, et al. Cell- state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell. 2014;158(6):1309-1323.
28. Lagadinou ED, Sach A, Callahan K, et al. BCL-2 inhibition targets oxidative phospho- rylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329-341.
29. Medeiros BC, Fathi AT, DiNardo CD, et al. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 2017; 31(2):272-281.
30. Chan WK, Lorenzi PL, Anishkin A, et al. The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood. 2014;123(23): 3596-3606.
31. Offman MN, Krol M, Patel N, et al. Rational engineering of L-asparaginase reveals impor- tance of dual activity for cancer cell toxicity. Blood. 2011;117(5):1614-1621.
32. Ando M, Sugimoto K, Kitoh T, et al. Selective apoptosis of natural killer-cell tumours by l-asparaginase. Br J Haematol. 2005;130(6):860-868.
33. Willems L, Jacque N, Jacquel A, et al. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood. 2013; 122(20): 3521-3532.
34. Bertuccio SN, Serravalle S, Astolfi A, et al. Identification of a cytogenetic and molecular subgroup of acute myeloid leukemias show- ing sensitivity to L-Asparaginase. Oncotarget. 2017;8(66):109915-109923.
haematologica | 2020; 105(8)
2129


































































































   151   152   153   154   155