Page 81 - 2020_07-Haematologica-web
P. 81

Erythropoiesis at a clonal level
tion. It would be of interest to examine megakaryocytes/platelet output in our model, at steady state or under stress, but the size and lack of nucleus in platelets present challenges, as does the rarity of megakaryocytes in the BM. We are developing an opti- mized vector allowing concurrent single cell RNA-Seq and barcode retrieval to further investigate platelet and other lineage relationships.17
In conclusion, this study is the first to quantitatively track erythropoiesis at a clonal level in vivo in a translation- ally-relevant model. Overall, our analyses indicate long- term shared ontogeny with other lineages, particularly myeloid cells, without measurable contributions from highly erythroid-biased or restricted long-term engrafting HSPC, even under stressors such as aging or erythroid lin-
eage-specific cytokine stimulation. A better understanding of erythropoiesis at this level has relevance for further development of new therapies targeting erythroid disor- ders.
Funding
This research was supported by the NHLBI Division of Intramural Research.
References
1. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000; 404(6774):193-197.
2. Vannucchi AM, Paoletti F, Linari S, et al. Identification and characterization of a bipotent (erythroid and megakaryocytic) cell precursor from the spleen of phenylhy- drazine-treated mice. Blood. 2000; 95(8):2559-2568.
3. Manz MG, Miyamoto T, Akashi K, Weissman IL. Prospective isolation of human clonogenic common myeloid pro- genitors. Proc Natl Acad Sci U S A. 2002; 99(18):11872-11877.
4. Adolfsson J, Mansson R, Buza-Vidas N, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295- 306.
5. Notta F, Zandi S, Takayama N, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2016;351(6269): aab2116.
6. Psaila B, Barkas N, Iskander D, et al. Single-cell profiling of human megakary- ocyte-erythroid progenitors identifies dis- tinct megakaryocyte and erythroid differ- entiation pathways. Genome Biol. 2016;17:83.
7. Sanada C, Xavier-Ferrucio J, Lu YC, et al. Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood. 2016;128(7):923-933.
8. Athanasiadis EI, Botthof JG, Andres H, Ferreira L, Lio P, Cvejic A. Single-cell RNA- sequencing uncovers transcriptional states and fate decisions in haematopoiesis. Nat Commun. 2017;8(1):2045.
9. Tusi BK, Wolock SL, Weinreb C, et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature. 2018;555(7694):54-60.
10. de Graaf CA, Choi J, Baldwin TM, et al. Haemopedia: An Expression Atlas of Murine Hematopoietic Cells. Stem Cell Reports. 2016;7(3):571-582.
11. Hamey FK, Nestorowa S, Kinston SJ, Kent DG, Wilson NK, Gottgens B. Reconstructing blood stem cell regulatory
network models from single-cell molecular profiles. Proc Natl Acad Sci U S A. 2017;114(23):5822-5829.
12. Paul F, Arkin Y, Giladi A, et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell. 2015;163(7):1663-1677.
13. Velten L, Haas SF, Raffel S, et al. Human haematopoietic stem cell lineage commit- ment is a continuous process. Nat Cell Biol. 2017;19(4):271-281.
14. Dykstra B, Kent D, Bowie M, et al. Long- term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell. 2007;1(2):218-229.
15. Yamamoto R, Morita Y, Ooehara J, et al. Clonal analysis unveils self-renewing line- age-restricted progenitors generated direct- ly from hematopoietic stem cells. Cell. 2013; 154(5):1112-1126.
16. Carrelha J, Meng Y, Kettyle LM, et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature. 2018;554(7690):106-111.
17. Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, et al. Clonal analysis of lineage fate in native haematopoiesis. Nature. 2018; 553(7687):212-216.
18. Donahue RE, Dunbar CE. Update on the use of nonhuman primate models for pre- clinical testing of gene therapy approaches targeting hematopoietic cells. Hum Gene Ther. 2001; 12(6):607-617.
19. Shepherd BE, Kiem HP, Lansdorp PM, et al. Hematopoietic stem-cell behavior in non- human primates. Blood. 2007;110(6):1806- 1813.
20. Koelle SJ, Espinoza DA, Wu C, et al. Quantitative stability of hematopoietic stem and progenitor cell clonal output in rhesus macaques receiving transplants. Blood. 2017;129(11):1448-1457.
21. Wu C, Li B, Lu R, et al. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell. 2014;14(4):486-499.
22. Yu KR, Espinoza DA, Wu C, et al. The impact of aging on primate hematopoiesis as interrogated by clonal tracking. Blood. 2018;131(11):1195-1205.
23. Wu C, Espinoza DA, Koelle SJ, et al. Geographic clonal tracking in macaques provides insights into HSPC migration and differentiation. J Exp Med. 2018;215(1):217- 232.
24. Donahue RE, Kuramoto K, Dunbar CE.
Large animal models for stem and progeni- tor cell analysis. Curr Protoc Immunol. 2005;Chapter 22:Unit 22A.1.
25. Wu C, Li B, Lu R, et al. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell. 2014;14(4):486-499.
26. Yu KR, Espinoza DA, Wu C, et al. The impact of aging on primate hematopoiesis as interrogated by clonal tracking. Blood. 2018;131(11):1195-1205.
27. Lu R, Neff NF, Quake SR, Weissman IL. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol. 2011;29(10):928-933.
28. Uchida N, Washington KN, Hayakawa J, et al. Development of a human immunodefi- ciency virus type 1-based lentiviral vector that allows efficient transduction of both human and rhesus blood cells. J Virol. 2009; 83(19):9854-9862.
29. Lu R, Neff NF, Quake SR, Weissman IL. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol. 2011;29(10):928-933.
30. Fornas O, Domingo JC, Marin P, Petriz J. Flow cytometric-based isolation of nucleat- ed erythroid cells during maturation: an approach to cell surface antigen studies. Cytometry. 2002;50(6):305-312.
31. Sriprawat K, Kaewpongsri S, Suwanarusk R, et al. Effective and cheap removal of leukocytes and platelets from Plasmodium vivax infected blood. Malar J. 2009;8:115.
32. Wong S, Keyvanfar K, Wan Z, Kajigaya S, Young NS, Zhi N. Establishment of an ery- throid cell line from primary CD36+ ery- throid progenitor cells. Exp Hematol. 2010;38(11):994-1005.e1-2.
33. Ramakrishnan R, Cheung WK, Farrell F, Joffee L, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of recombi- nant human erythropoietin after intra- venous and subcutaneous dose administra- tion in cynomolgus monkeys. J Pharmacol Exp Ther. 2003;306(1):324-331.
34. Lavelle D, Molokie R, Ducksworth J, DeSimone J. Effects of hydroxurea, stem cell factor, and erythropoietin in combina- tion on fetal hemoglobin in the baboon. Exp Hematol. 2001;29(2):156-162.
35. Umemura T, al-Khatti A, Donahue RE, Papayannopoulou T, Stamatoyannopoulos G. Effects of interleukin-3 and erythropoi-
Acknowledgments
We thank Naoya Uchida for the χHIV plasmid, and Keyvan Keyvanfar for cell sorting. We acknowledge the support of the NHLBI FACS Core, the NHLBI DNA Sequencing and Genomics Core, the NHLBI animal care and veterinary staff, and the NIH Biowulf High-Performance Computing Resource.
haematologica | 2020; 105(7)
1823


































































































   79   80   81   82   83