Page 34 - 2020_07-Haematologica-web
P. 34

E. Hellström-Lindberg et al.
types: evidence from a core dataset of 2124
patients. Blood. 2007;110(13):4385-4395.
23. Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med.
2011;364(26):2496-2506.
24. Papaemmanuil E, Gerstung M, Malcovati L,
et al. Clinical and biological implications of driver mutations in myelodysplastic syn- dromes. Blood. 2013;122(22):3616-3627; quiz 99.
25. Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241-247.
26. Jaiswal S, Fontanillas P, Flannick J, et al. Age- related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371 (26):2488-2498.
27. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477-2487.
28. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553- 567.
29. Abdel-Wahab O, Gao J, Adli M, et al. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med. 2013;210(12):2641-2659.
30. Feinberg AP, Irizarry RA. Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A. 2010;107(Suppl 1):1757-1764.
31. Pellagatti A, Benner A, Mills KI, et al. Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes. J Clin Oncol. 2013;31(28):3557- 3564.
32. Shiozawa Y, Malcovati L, Gallì A, et al. Gene expression and risk of leukemic transforma- tion in myelodysplasia. Blood. 2017;130(24): 2642-2653.
33. Im H, Rao V, Sridhar K, et al. Distinct tran- scriptomic and exomic abnormalities within myelodysplastic syndrome marrow cells. Leuk Lymphoma. 2018;59(12):2952-2962.
34. Chamuleau ME, Westers TM, van Dreunen L, et al. Immune mediated autologous cyto- toxicity against hematopoietic precursor cells in patients with myelodysplastic syn- drome. Haematologica. 2009;94(4):496-506.
35. Kordasti SY, Ingram W, Hayden J, et al. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood. 2007;110(3):847-850.
36. Kotsianidis I, Bouchliou I, Nakou E, et al. Kinetics, function and bone marrow traffick- ing of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia. 2009;23(3):510-518.
37. Roe C, Ali N, Epling-Burnette PK, et al. T-cell large granular lymphocyte proliferation (LGL) in patients with myelodysplastic syn- dromes (MDS): not an Innocent bystander? Clin Lymphoma Myeloma Leuk. 2016; 16:S89.
38. Durrani J, Awada H, Kishtagari A, et al. Large granular lymphocytic leukemia coex- ists with myeloid clones and myelodysplas- tic syndrome. Leukemia. 2020;34(3):957- 962.
39. Yoshida Y, Oguma S, Ohno H, et al. Co- occurrence of monoclonal gammopathy and myelodysplasia: a retrospective study of
fourteen cases. Int J Hematol. 2014;99(6):
721-725.
40. Mailankody S, Pfeiffer RM, Kristinsson SY,
et al. Risk of acute myeloid leukemia and myelodysplastic syndromes after multiple myeloma and its precursor disease (MGUS). Blood. 2011;118(15):4086-4092.
41. Blau O, Baldus CD, Hofmann WK, et al. Mesenchymal stromal cells of myelodys- plastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood. 2011;118(20):5583-5592.
42. von der Heide EK, Neumann M, Vosberg S, et al. Molecular alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients. Leukemia. 2017;31(5):1069-1078.
evolution of therapy-related acute myeloid
leukaemia. Nature. 2015;518(7540):552-555. 56. Krönke J, Fink EC, Hollenbach PW, et al. Lenalidomide induces ubiquitination and degradation of CK1a in del (5q) MDS.
Nature. 2015;523(7559):183-188.
57. Basiorka AA, McGraw KL, De Ceuninck L, et al. Lenalidomide stabilizes the erythropoi- etin receptor by inhibiting the E3 ubiquitin ligase RNF41. Cancer Res. 2016;76(12):3531-
3540.
58. Cazzola M, Invernizzi R, Bergamaschi G, et
al. Mitochondrial ferritin expression in ery- throid cells from patients with sideroblastic anemia. Blood. 2003;101(5):1996-2000.
59. Nikpour M, Scharenberg C, Liu A, et al. The transporter ABCB7 is a mediator of the phe- notype of acquired refractory anemia with ring sideroblasts. Leukemia. 2013;27(4):889-
43. Kim Y, Jekarl DW, Kim J, et al. Genetic and
epigenetic alterations of bone marrow stro- 896.
mal cells in myelodysplastic syndrome and acute myeloid leukemia patients. Stem Cell Res. 2015;14(2):177-184.
44. Santamaria C, Muntion S, Roson B, et al. Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchy- mal stromal cells from myelodysplastic syn- drome patients. Haematologica. 2012;97(8): 1218-1224.
45. Lopez-Villar O, Garcia JL, Sanchez-Guijo FM, et al. Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specif- ic genetic profile for the 5q- syndrome. Leukemia. 2009;23(4):664-672.
46. Zambetti NA, Ping Z, Chen S, et al. Mesenchymal inflammation drives genotox- ic stress in hematopoietic stem cells and pre- dicts disease evolution in human pre- leukemia. Cell Stem Cell. 2016;19(5):613- 627.
60. Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodys- plasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384-1395.
61. Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64-69.
62. Shiozawa Y, Malcovati L, Galli A, et al. Aberrant splicing and defective mRNA pro- duction induced by somatic spliceosome mutations in myelodysplasia. Nat Commun. 2018;9(1):3649.
63. Obeng EA, Chappell RJ, Seiler M, et al. Physiologic expression of Sf3b1(K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell. 2016;30(3):404-417.
64. Mupo A, Seiler M, Sathiaseelan V, et al. Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts. Leukemia. 2017;31(3):720-
47. Geyh S, Oz S, Cadeddu RP, et al. Insufficient
stromal support in MDS results from molec-
ular and functional deficits of mesenchymal
stromal cells. Leukemia. 2013;27(9):1841- 727.
1851.
48. Geyh S, Rodriguez-Paredes M, Jager P, et al.
Functional inhibition of mesenchymal stro- mal cells in acute myeloid leukemia. Leukemia. 2016;30(3):683-691.
49. Medyouf H, Mossner M, Jann JC, et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell. 2014;14(6):824-837.
50. Walkley CR, Olsen GH, Dworkin S, et al. A microenvironment-induced myeloprolifera- tive syndrome caused by retinoic acid recep- tor gamma deficiency. Cell. 2007;129(6): 1097-1110.
51. Dong L, Yu WM, Zheng H, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenviron- ment. Nature. 2016;539(7628):304-308.
52. Kim YW, Koo BK, Jeong HW, et al. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood. 2008;112(12):4628-4638.
53. Takahashi K, Wang F, Kantarjian H, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 2017;18 (1):100-111.
54. Coombs CC, Zehir A, Devlin SM, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clini- cal outcomes. Cell Stem Cell. 2017;21(3): 374-382.e4.
55. Wong TN, Ramsingh G, Young AL, et al. Role of TP53 mutations in the origin and
65. Mortera-Blanco T, Dimitriou M, Woll PS, et al. SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells. Blood. 2017;130(7):881-890.
66. Elvarsdottir EM, Mortera-Blanco T, Dimitriou M, et al. A three-dimensional in vitro model of erythropoiesis recapitulates erythroid failure in myelodysplastic syn- dromes. Leukemia. 2020;34(1):271-282.
67. Malcovati L, Stevenson K, Papaemmanuil E, et al. SF3B1-mutant myelodysplastic syn- drome as a distinct disease subtype - a pro- posal of the International Working Group for the Prognosis of Myelodysplastic Syndromes (IWG-PM). Blood, in press. 2020.
68. Churpek JE. Familial myelodysplastic syn- drome/acute myeloid leukemia. Best Pract Res Clin Haematol. 2017;30(4):287-289.
69. Godley LA, Shimamura A. Genetic predis- position to hematologic malignancies: man- agement and surveillance. Blood. 2017;130(4):424-432.
70. Wlodarski MW, Collin M, Horwitz MS. GATA2 deficiency and related myeloid neo- plasms. Semin Hematol. 2017;54(2):81-86.
71. Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361(24):2353-2365.
72. Tesi B, Davidsson J, Voss M, et al. Gain-of- function SAMD9L mutations cause a syn- drome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood. 2017;129(16):2266-2279.
73. Douglas SPM, Siipola P, Kovanen PE, et al. ERCC6L2 defines a novel entity within inherited acute myeloid leukemia. Blood.
1776
haematologica | 2020; 105(7)


































































































   32   33   34   35   36