Page 194 - 2020_07-Haematologica-web
P. 194

M. Colombo et al.
5. Colombo M, Mirandola L, Chiriva-Internati
M, et al. Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu. Front Immunol. 2018;9:1823.
6. Platonova N, Lesma E, Basile A, et al. Targeting Notch as a Therapeutic Approach for Human Malignancies. Curr Pharm Des. 2017;23(1):108-134.
7. Colombo M, Mirandola L, Platonova N, et al. Notch-directed microenvironment repro- gramming in myeloma: a single path to mul- tiple outcomes. Leukemia. 2013;27(5):1009- 1018.
8. Mirandola L, Comi P, Cobos E, Kast WM, Chiriva-Internati M, Chiaramonte R. Notch- ing from T-cell to B-cell lymphoid malignan- cies. Cancer Lett. 2011;308(1):1-13.
9. Platonova N, Manzo T, Mirandola L, et al. PI3K/AKT signaling inhibits NOTCH1 lyso- some-mediated degradation. Genes Chromosomes Cancer. 2015;54(8):516-526.
10. Colombo M, Galletti S, Garavelli S, et al. Notch signaling deregulation in multiple myeloma: A rational molecular target. Oncotarget. 2015;6(29):26826-26840.
11. Colombo M, Galletti S, Bulfamante G, et al. Multiple myeloma-derived Jagged ligands increases autocrine and paracrine inter- leukin-6 expression in bone marrow niche. Oncotarget. 2016;7(35):56013-56029.
12. Skrtic A, Korac P, Kristo DR, Ajdukovic Stojisavljevic R, Ivankovic D, Dominis M. Immunohistochemical analysis of NOTCH1 and JAGGED1 expression in multiple myelo- ma and monoclonal gammopathy of unde- termined significance. Hum Pathol. 2010;41(12):1702-1710.
13. Houde C, Li Y, Song L, et al. Overexpression of the NOTCH ligand JAG2 in malignant plasma cells from multiple myeloma patients and cell lines. Blood. 2004;104(12):3697- 3704.
14. Ghoshal P, Nganga AJ, Moran-Giuati J, et al. Loss of the SMRT/NCoR2 corepressor corre- lates with JAG2 overexpression in multiple myeloma. Cancer Res. 2009;69(10):4380- 4387.
15. Takeuchi T, Adachi Y, Ohtsuki Y. Skeletrophin, a novel ubiquitin ligase to the intracellular region of Jagged-2, is aberrantly expressed in multiple myeloma. Am J Pathol. 2005;166(6):1817-1826.
16. van Stralen E, van de Wetering M, Agnelli L, Neri A, Clevers HC, Bast BJ. Identification of primary MAFB target genes in multiple myeloma. Exp Hematol. 2009;37(1):78-86.
17. Colombo M, Thummler K, Mirandola L, et al. Notch signaling drives multiple myeloma induced osteoclastogenesis. Oncotarget. 2014;5(21):10393-10406.
18. Ye QF, Zhang YC, Peng XQ, Long Z, Ming YZ, He LY. Silencing Notch-1 induces apop- tosis and increases the chemosensitivity of prostate cancer cells to docetaxel through Bcl-2 and Bax. Oncol Lett. 2012;3(4):879-884.
19. Ju JH, Yang W, Oh S, et al. HER2 stabilizes survivin while concomitantly down-regulat- ing survivin gene transcription by suppress- ing Notch cleavage. Biochem J. 2013;451(1):123-134.
20. Buda G, Ricci D, Huang CC, et al. Polymorphisms in the multiple drug resist- ance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated lipo-
somal doxorubicin. Ann Hematol. 2010;89
(11):1133-1140.
21. Kawano Y, Moschetta M, Manier S, et al.
Targeting the bone marrow microenviron- ment in multiple myeloma. Immunol Rev. 2015;263(1):160-172.
22. Colombo M, Platonova N, Giannandrea D, Palano MT, Basile A, Chiaramonte R. Re- establishing Apoptosis Competence in Bone Associated Cancers via Communicative Reprogramming Induced Through Notch Signaling Inhibition. Front Pharmacol. 2019;10:145.
23. Nefedova Y, Cheng P, Alsina M, Dalton WS, Gabrilovich DI. Involvement of Notch-1 sig- naling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood. 2004;103(9):3503-3510.
24. Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI. Inhibition of Notch sig- naling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood. 2008;111(4):2220-2229.
25. Muguruma Y, Yahata T, Warita T, et al. Jagged1-induced Notch activation con- tributes to the acquisition of bortezomib resistance in myeloma cells. Blood Cancer J. 2017;7(12):650.
26. Kato H, Taniguchi Y, Kurooka H, et al. Involvement of RBP-J in biological functions of mouse Notch1 and its derivatives. Development. 1997;124(20):4133-4141.
27. Khan N, Kahl B. Targeting BCL-2 in Hematologic Malignancies. Target Oncol. 2018;13(3):257-267.
28. Chiaramonte R, Colombo M, Bulfamante G, et al. Notch pathway promotes ovarian can- cer growth and migration via CXCR4/SDF1alpha chemokine system. Int J Biochem Cell Biol. 2015;66:134-140.
29. Mirandola L, Apicella L, Colombo M, et al. Anti-Notch treatment prevents multiple myeloma cells localization to the bone mar- row via the chemokine system CXCR4/SDF- 1. Leukemia. 2013;27(7):1558-1566.
30. Platonova N, Parravicini C, Sensi C, et al. Identification of small molecules uncoupling the Notch::Jagged interaction through an integrated high-throughput screening. PloS One. 2017;12(11):e0182640.
31. Richardson PG, Sonneveld P, Schuster M, et al. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to- event results of the APEX trial. Blood. 2007;110(10):3557-3560.
32. Azab AK, Runnels JM, Pitsillides C, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113(18):4341-4351.
33. Sacco A, Roccaro AM, Ma D, et al. Cancer Cell Dissemination and Homing to the Bone Marrow in a Zebrafish Model. Cancer Res. 2016;76(2):463-471.
34. Waldschmidt JM, Simon A, Wider D, et al. CXCL12 and CXCR7 are relevant targets to reverse cell adhesion-mediated drug resist- ance in multiple myeloma. Br J Haematol. 2017;179(1):36-49.
35. Lin J, Zhang W, Zhao J-J, et al. A clinically rel- evant in vivo zebrafish model of human mul- tiple myeloma (MM) to study preclinical therapeutic efficacy. Blood. 2016;128(2):249- 252.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48. 49.
50.
51.
Saltarella I, Frassanito MA, Lamanuzzi A, et al. Homotypic and Heterotypic Activation of the Notch Pathway in Multiple Myeloma– Enhanced Angiogenesis: A Novel Therapeutic Target? Neoplasia. 2019;21(1):93-105.
Jia CM, Tian YY, Quan LN, Jiang L, Liu AC. miR-26b-5p suppresses proliferation and promotes apoptosis in multiple myeloma cells by targeting JAG1. Pathol Res Pract. 2018;214(9):1388-1394.
Jundt F, Probsting KS, Anagnostopoulos I, et al. Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood. 2004;103(9):3511-3515.
Nwabo Kamdje AH, Krampera M. Notch signaling in acute lymphoblastic leukemia: any role for stromal microenvironment? Blood. 2011;118(25):6506-6514.
Nwabo Kamdje AH, Mosna F, Bifari F, et al. Notch-3 and Notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. Blood. 2011;118(2):380-389. Takam Kamga P, Dal Collo G, Midolo M, Adamo A, Delfino P. Inhibition of Notch Signaling Enhances Chemosensitivity in B- cell Precursor Acute Lymphoblastic Leukemia. Cancer Res. 2019;79(3):639-649. Nwabo Kamdje AH, Bassi G, Pacelli L, et al. Role of stromal cell-mediated Notch signal- ing in CLL resistance to chemotherapy. Blood Cancer J. 2012;2(5):e73-e73.
Takam Kamga P, Bassi G, Cassaro A, et al. Notch signalling drives bone marrow stro- mal cell-mediated chemoresistance in acute myeloid leukemia. Oncotarget. 2016;7(16):21713-21727.
Xu D, Hu J, De Bruyne E, et al. Dll1/Notch activation contributes to bortezomib resist- ance by upregulating CYP1A1 in multiple myeloma. Biochem Biophys Res Commun. 2012;428(4):518-524.
Romagnoli M, Trichet V, David C, et al. Significant impact of survivin on myeloma cell growth. Leukemia. 2007;21(5):1070- 1078.
Cho S, Lu M, He X, et al. Notch1 regulates the expression of the multidrug resistance gene ABCC1/MRP1 in cultured cancer cells. Proc Natl Acad Sci U S A. 2011;108(51): 20778-20783.
Ding Y, Shen Y. Notch increased vitronection adhesion protects myeloma cells from drug induced apoptosis. Biochem Biophys Res Commun. 2015;467(4):717-722.
Go R-E, Hwang K-A, Choi K-C. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 2015;147:24-30.
Li D, Masiero M, Banham AH, Harris AL. The Notch Ligand Jagged1 as a Target for Anti-Tumor Therapy. Front Oncol. 2014;4:254.
Milano J, McKay J, Dagenais C, et al. Modulation of notch processing by gamma- secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage dif- ferentiation. Toxicol Sci. 2004;82(1):341- 358.
Wong GT, Manfra D, Poulet FM, et al. Chronic treatment with the gamma-secre- tase inhibitor LY-411,575 inhibits beta-amy- loid peptide production and alters lym- phopoiesis and intestinal cell differentiation. J Biol Chem. 2004;279(13):12876-12882.
1936
haematologica | 2020; 105(7)


































































































   192   193   194   195   196