Page 164 - 2020_07-Haematologica-web
P. 164

C.R. Soderquist et al.
disease of the gastrointestinal tract. Int J
Surg Pathol. 2019;27(1):102-107.
29. Koskela HLM, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med.
2012;366(20):1905-1913.
30. Liau NPD, Laktyushin A, Lucet IS, et al. The
molecular basis of JAK/STAT inhibition by
SOCS1. Nat Commun. 2018;9 (1):1558.
31. Bastidas Torres AN, Cats D, Mei H, et al. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides. Genes
Chromosom Cancer. 2018;57(12):653-664.
32. Schwartz FH, Cai Q, Fellmann E, et al. TET2 mutations in B cells of patients affect- ed by angioimmunoblastic T-cell lym-
phoma. J Pathol. 2017;242(2):129-133.
33. Van Arnam JS, Lim MS, Elenitoba-Johnson KSJ. Novel insights into the pathogenesis of T-cell lymphomas. Blood. 2018;131(21):
2320-2330.
34. Zang S, Li J, Yang H, et al. Mutations in 5-
methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J Clin Invest. 2017;127(8):2998-3012.
35. Watatani Y, Sato Y, Miyoshi H, et al. Molecular heterogeneity in peripheral T- cell lymphoma, not otherwise specified revealed by comprehensive genetic profil- ing. Leukemia. 2019;33(12):2867-2883.
36. Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioim- munoblastic T-cell lymphoma. Blood. 2012;119(8):1901-1903.
37. Foulkes WD, Flanders TY, Pollock PM, Hayward NK. The CDKN2A (p16) gene and human cancer. Mol Med. 1997;3(1):5- 20.
38. Wenzl K, Manske MK, Sarangi V, et al. Loss
of TNFAIP3 enhances MYD88L265P-driven signaling in non-Hodgkin lymphoma. Blood Cancer J. 2018;8(10):97.
39. Myer VE, Fan XC, Steitz JA. Identification of HuR as a protein implicated in AUUUA- mediated mRNA decay. EMBO J. 1997;16(8):2130-2139.
40. Chen CY, Del Gatto-Konczak F, Wu Z, Karin M. Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science. 1998;280(5371):1945- 1949.
41. Laâbi Y, Gras MP, Carbonnel F, et al. A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lym- phoma. EMBO J. 1992;11(11):3897-3904.
42. Ross SH, Cantrell DA. Signaling and func- tion of interleukin-2 in T lymphocytes. Annu Rev Immunol. 2018;36(1):411-433.
43. Chen J, Zhang Y, Petrus MN, et al. Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc Natl Acad Sci U S A. 2017;114(15):3975-3980.
44. Ettersperger J, Montcuquet N, Malamut G, et al. Interleukin-15-dependent T-cell-like innate intraepithelial lymphocytes develop in the intestine and transform into lym- phomas in celiac disease. Immunity. 2016;45(3):610-625.
45. GuoL,WenZ,SuX,XiaoS,WangY. Indolent T-cell lymphoproliferative disease with synchronous diffuse large B-cell lym- phoma. Medicine (Baltimore). 2019;98(17): e15323.
46. Farstad IN, Halstensen TS, Lien B, Kilshaw PJ, Lazarovitz AI, Brandtzaeg P. Distribution of β7 integrins in human intes-
tinal mucosa and organized gut-associated lymphoid tissue. Immunology. 1996;89(2): 227-237.
47. Micklem KJ, Dong Y, Willis A, et al. HML- 1 antigen on mucosa-associated T cells, activated cells, and hairy leukemic cells is a new integrin containing the beta 7 subunit. Am J Pathol. 1991;139(6):1297-301.
48. Shaw SK, Brenner MB. The beta 7 integrins in mucosal homing and retention. Semin Immunol. 1995;7(5):335-342.
49. Peine M, Rausch S, Helmstetter C, et al. Stable T-bet+GATA-3+ Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and limit immunopatho- logic inflammation. PLoS Biol. 2013;11 (8):e1001633.
50. Hegazy AN, Peine M, Helmstetter C, et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity. 2010;32(1):116-128.
51. Fox A, Harland KL, Kedzierska K, Kelso A. Exposure of human CD8+ T cells to type-2 cytokines impairs division and differentia- tion and induces limited polarization. Front Immunol. 2018;9:1141.
52. Tai TS, Pai SY, Ho IC. GATA-3 Regulates the homeostasis and activation of CD8+ T cells. J Immunol. 2013;190(1):428-437.
53. Wang T, Feldman AL, Wada DA, et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecu- lar and clinical features. Blood. 2014;123 (19):3007-3015.
54. Manso R, Bellas C, Martín-Acosta P, et al. C-MYC is related to GATA3 expression and associated with poor prognosis in nodal peripheral T-cell lymphomas. Haematologica. 2016;101(8):e336-338.
1906
haematologica | 2020; 105(7)


































































































   162   163   164   165   166