Page 102 - 2020_07-Haematologica-web
P. 102

C. Casu et al.
with new therapies? Blood Rev. 2018;32(4):
300-311.
22. Cohen AR, Glimm E, Porter JB. Effect of
transfusional iron intake on response to chelation therapy in beta-thalassemia major. Blood. 2008;111(2):583-587.
23. Preza GC, Ruchala P, Pinon R, et al. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J Clin Invest. 2011;121 (12):4880-4888.
24. Ramos E, Ruchala P, Goodnough JB, et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood. 2012;120(18): 3829-3836.
25. Schmidt PJ, Toudjarska I, Sendamarai AK, et al. An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe-/- mice and ameliorates anemia and iron overload in murine β-thalassemia intermedia. Blood. 2013;121(7):1200-1208.
26. Schmidt PJ, Racie T, Westerman M, et al. Combination therapy with a Tmprss6 RNAi-therapeutic and the oral iron chelator deferiprone additively diminishes secondary iron overload in a mouse model of β-tha- lassemia intermedia. Am J Hematol. 2015;90(4):310-313.
27. Casu C, Aghajan M, Oikonomidou PR, et al. Combination of Tmprss6- ASO and the iron chelator deferiprone improves erythro- poiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia. Haematologica. 2016;101(1):e8-e11.
28. Casu C, Oikonomidou PR, Chen H, et al. Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and poly- cythemia vera. Blood. 2016;128(2):265-276.
29. Chen H, Choesang T, Li H, et al. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation. Haematologica. 2016;101(3):297- 308.
30. Huo Y, McConnell SC, Ryan TM. Preclinical
transfusion-dependent humanized mouse model of beta thalassemia major. Blood. 2009;113(19):4763-4770.
31. Huo Y, McConnell SC, Liu SR, et al. Humanized mouse model of Cooley's ane- mia. J Biol Chem. 2009;284(8):4889-4896.
genic mouse for competitive Hematopoietic stem cell transplantation: the C57BL/6- CD45.1(STEM) mouse. Stem Cell Reports. 2016;6(6):985-992.
42. Ocana MF, Neubert H. An immunoaffinity liquid chromatography-tandem mass spec- trometry assay for the quantitation of matrix metalloproteinase 9 in mouse serum. Anal Biochem. 2010;399(2):202-210.
43. McAvoy T, Lassman ME, Spellman DS, et al. Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry. Clin Chem. 2014;60(4):683-689.
44. Palandra J, Finelli A, Zhu M, et al. Highly specific and sensitive measurements of human and monkey interleukin 21 using sequential protein and tryptic peptide immunoaffinity LC-MS/MS. Anal Chem. 2013;85(11):5522-5529.
45. Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int. 2011;108(31-32):532-540.
46. Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev. 2018;32(2):130-
32. Huo Y, McConnell SC, Liu S, et al. Humanized mouse models of Cooley's ane- mia: correct fetal-to-adult hemoglobin switching, disease onset, and disease pathol- ogy. Ann N Y Acad Sci. 2010;1202:45-51.
33. McColl B, Vadolas J. Animal models of β- hemoglobinopathies: utility and limitations. J Blood Med. 2016;7:263-274.
34. Skow LC, Burkhart BA, Johnson FM, et al. A mouse model for beta-thalassemia. Cell. 1983;34(3):1043-1052.
35. Shehee WR, Oliver P, Smithies O. Lethal thalassemia after insertional disruption of the mouse major adult beta-globin gene. Proc Natl Acad Sci U S A. 1993;90(8):3177- 3181.
36. Yang B, Kirby S, Lewis J, et al. A mouse model for beta 0-thalassemia. Proc Natl Acad Sci U S A. 1995;92(25):11608-11612.
37. Ciavatta DJ, Ryan TM, Farmer SC, et al.
Mouse model of human beta zero tha- 143.
lassemia: targeted deletion of the mouse beta maj- and beta min-globin genes in embryonic stem cells. Proc Natl Acad Sci U S A. 1995;92(20):9259-9263.
38. Rivella S, May C, Chadburn A, et al. A novel murine model of Cooley anemia and its res- cue by lentiviral-mediated human beta-glo- bin gene transfer. Blood. 2003;101(8):2932- 2939.
39. Libani IV, Guy EC, Melchiori L, et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood. 2008;112(3):875- 885.
40. Schaefer BC, Schaefer ML, Kappler JW, et al. Observation of antigen-dependent CD8+ T- cell/ dendritic cell interactions in vivo. Cell Immunol. 2001;214(2):110-122.
41. Mercier FE, Sykes DB, Scadden DT. Single targeted exon mutation creates a true con-
47. Suragani RN, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by pro- moting late-stage erythropoiesis. Nat Med. 2014;20(4):408-414.
48. Suragani RN, Cawley SM, Li R, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and dis- ease complications in murine β-thalassemia. Blood. 2014;123(25):3864-3872.
49. Dussiot M, Maciel TT, Fricot A, et al. An activin receptor IIA ligand trap corrects inef- fective erythropoiesis in β-thalassemia. Nat Med. 2014;20(4):398-407.
50. Cappellini MD, Porter J, Origa R, et al. Sotatercept, a novel transforming growth factor β ligand trap, improves anemia in β- thalassemia: a phase 2, open-label, dose- finding study. Haematologica. 2019;104(3): 477-484.
1844
haematologica | 2020; 105(7)


































































































   100   101   102   103   104