Page 87 - Haematologica May 2020
P. 87

Extensive mixed chimerism analysis in sickle cell disease post HSCT
    References
1. Kato GJ, Piel FB, Reid CD, et al. Sickle cell disease. Nat Rev Dis Prim. 2018;4:18010.
2. Williams TN, Weatherall DJ. World distribu-
tion, population genetics, and health burden of the hemoglobinopathies. Cold Spring Harb Perspect Med. 2012; 2(9):a011692.
3. Piel FB, Patil AP, Howes RE, et al. Global epi- demiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet. 2013;381(9861):142-151.
4. Bernaudin F, Socie G, Kuentz M, et al. Long- term results of related myeloablative stem- cell transplantation to cure sickle cell disease. Blood. 2007;110(7):2749-2756.
5. Bhatia M, Walters MC. Hematopoietic cell transplantation for thalassemia and sickle cell disease: past, present and future. Bone Marrow Transplant. 2008;4(2):109-117.
6. Gluckman E, Cappelli B, Bernaudin F, et al. Sickle cell disease: an international survey of results of HLA-identical sibling hematopoi- etic stem cell transplantation. Blood. 2017;129(11):1548-1556.
7. Bernaudin F, Kuentz M. Haplo-BMT: cure or back to sickle cell? Blood. 2012;120(22): 4276-4277.
8. Gaziev J, Isgrò A, Sodani P, et al. Haploidentical HSCT for hemoglo- binopathies: improved outcomes with TCR +/CD19+-depleted grafts. Blood Adv. 2018;2(3):263-270.
9. Krishnamurti L, Neuberg DS, Sullivan KM, et al. Bone marrow transplantation for ado- lescents and young adults with sickle cell disease: Results of a prospective multicenter pilot study. Am J Hematol. 2019; 94(4):446- 454.
10. Hsieh MM, Fitzhugh CD, Weitzel RP, et al. Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell trans- plantation for severe sickle cell phenotype. JAMA 2014;312(1):48-56.
11. King AA, Kamani N, Bunin N, et al. Successful matched sibling donor marrow transplantation following reduced intensity conditioning in children with hemoglo- binopathies. Am J Hematol. 2015; 90(12):
1093-1098.
12. Bhatia M, Jin Z, Baker C, et al. Reduced tox-
icity, myeloablative conditioning with BU, fludarabine, alemtuzumab and SCT from sibling donors in children with sickle cell dis- ease. Bone Marrow Transplant. 2014;49(7): 913-920.
13. Bolaños-Meade J, Fuchs EJ, Luznik L, et al. HLA-haploidentical bone marrow transplan- tation with posttransplant cyclophos- phamide expands the donor pool for patients with sickle cell disease. Blood. 2012;120(22):4285-4291.
14. Ribeil J-A, Hacein-Bey-Abina S, Payen E, et al. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017;376(9):848 855.
15. Cavazzana M, Antoniani C, Miccio A. Gene therapy for β-hemoglobinopathies. Mol Ther. 2017;25(5):1142-1154.
16. Andreani M, Testi M, Lucarelli G. Mixed chimerism in haemoglobinopathies: from risk of graft rejection to immune tolerance. Tissue Antigens. 2014;83(3):137-146.
17. Wu CJ, Gladwin M, Tisdale J, et al. Mixed haematopoietic chimerism for sickle cell dis- ease prevents intravascular haemolysis. Br J Haematol. 2007;139(3):504-507.
18. Andreani M, Testi M, Battarra M, et al. Split chimerism between nucleated and red blood cells after bone marrow transplantation for haemoglobinopathies. Chimerism. 2011;2 (1):21-22.
19. Andreani M, Testi M, Gaziev J, et al. Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for tha- lassemia major or sickle cell disease. Haematologica. 2011;96(1):128-133.
20. Walters MC, Patience M, Leisenring W, et al. Stable mixed hematopoietic chimerism after bone marrow transplantation for sickle cell anemia. Biol Blood Marrow Transplant. 2001;7(12):665-673.
term event-free survival, chimerism and fer- tility outcomes in 234 patients with sickle- cell anemia younger than 30 years after myeloablative conditioning and matched- sibling transplantation in France. Haematologica. 2019 May 16. [Epub ahead of print]
23. Fitzhugh CD, Cordes S, Taylor T, et al. At least 20% donor myeloid chimerism is nec- essary to reverse the sickle phenotype after allogeneic HSCT. Blood. 2017;130(17):1946- 1948.
24. Wu CJ, Krishnamurti L, Kutok JL, et al. Evidence for ineffective erythropoiesis in severe sickle cell disease. Blood. 2005;106(10):3639-3645.
25. Miccio A, Cesari R, Lotti F, et al. In vivo selection of genetically modified erythrob- lastic progenitors leads to long-term correc- tion of beta-thalassemia. Proc Natl Acad Sci U S A. 2008;105(30):10547-10552.
26. Andreani M, Manna M, Lucarelli G, et al. Persistence of mixed chimerism in patients transplanted for the treatment of tha- lassemia. Blood. 1996;87(8):3494-3499.
27. Alizadeh M, Bernard M, Danic B, et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplanta- tion by real-time quantitative polymerase chain reaction. Blood. 2002;99(12):4618- 4625.
28. Altrock PM, Brendel C, Renella R, et al. Mathematical modeling of erythrocyte chimerism informs genetic intervention strategies for sickle cell disease. Am J Hematol. 2016;91(9):931-937.
29. Marziali M, Isgrò A, Sodani P, et al. Peripheral red blood cell split chimerism as a consequence of intramedullary selective apoptosis of recipient red blood cells in a case of sickle cell disease. Mediterr J Hematol Infect Dis. 2014;6(1):e2014066.
30. Weber L, Poletti V, Magrin E, et al. An opti- mized lentiviral vector efficiently corrects the human sickle cell disease phenotype. Mol Ther Methods Clin Dev. 2018;10:268-
21. Abraham A, Hsieh M, Eapen M, et al. Relationship between mixed donor-recipi-
ent chimerism and disease recurrence after 280.
hematopoietic cell transplantation for sickle cell disease. Biol Blood Marrow Transplant. 2017;23(12):2178-2183.
22. Bernaudin F, Dalle JH, Bories D, et al. Long-
31. Kanter J, Tisdale J, Kwiatkowski J et al. Outcomes for initial patient cohorts with up to 33 months of follow-up in the Hgb-206 phase 1 trial. Blood. 2018;132(Suppl 1):1080.
 haematologica | 2020; 105(5)
1247
   

























































   85   86   87   88   89