Page 38 - Haematologica May 2020
P. 38

N. Curto-Garcia et al.
  Med. 2013;369(25):2379-2390.
12. Rumi E, Cazzola M. Diagnosis , riskstratifi-
cation , and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129(6):680-693.
13. Shirane S, Araki M, Morishita S, et al. JAK2, CALR, and MPL mutation spectrum in Japanese patients with myeloproliferative neoplasms. Haematologica. 2015;100(2): e46-e48.
14. Ferreira Cristina S, Polo B, Lacerda JF. Somatic Mutations in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Semin Hematol. 2018;55(4): 215-222.
15. Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood. 2017;130(23):2475-2483.
16. Lord BI, Testa NG, Hendry JH. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood. 1975;46(1): 65-72.
17. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4 (1-2):7-25.
18. Sugiyama T, Nagasawa T. Bone marrow niches for hematopoietic stem cells and immune cells. Inflamm Allergy Drug Targets. 2012;11(3):201-206.
19. Colaianni G, Sun L, Di Benedetto A, et al. Bone marrow oxytocin mediates the anabol- ic action of estrogen on the skeleton. J Biol Chem. 2012;287(34):29159-29167.
20. Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hemo- poietic stem cells: inferences for the localiza- tion of stem cell niches. Blood. 2001;97(8): 2293-2299.
21. Lo Celso C, Fleming HE, Wu JW, et al. Live- animal tracking of individual haematopoiet- ic stem/progenitor cells in their niche. Nature. 2009;457(7225):92-96.
22. Xie Y, Yin T, Wiegraebe W, et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature. 2009;457 (7225):97-101.
23. Taichman RS. Blood and bone: Two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood. 2005;105(7):2631-2639.
24. Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimu- lating factor. J Exp Med. 1994;179(5):1677- 1682.
25. Taichman RS, Reilly MJ, Verma RS, et al. Augmented production of interleukin-6 by normal human osteoblasts in response to CD34+ hematopoietic bone marrow cells in vitro. Blood. 1997;89(4):1165-1172.
26. Galán-Díez M, Kousteni S. A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes Dev. 2018;32(5-6):324-326.
27. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoi- etic stem cell niche. Nature. 2003;425(6960): 841-846.
28. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and con- trol of the niche size. Nature. 2003;425 (6960):836-841.
29. Askmyr M, Sims NA, Martin TJ, Purton LE. What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol Metab. 2009;20(6):303-309.
30. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;452(7186):442-447.
31. Schmitt-Graeff AH, Nitschke R, Zeiser R. The hematopoietic niche in myeloprolifera- tive neoplasms. Mediators Inflamm. 2015;2015:347270.
32. Yu VWC, Saez B, Cook C, et al. Specific bone cells produce DLL4 to generate thy- mus-seeding progenitors from bone mar- row. J Exp Med. 2015;212(5):759-774.
33. Miyamoto T. Role of osteoclasts in regulat- ing hematopoietic stem and progenitor cells. World J Orthop. 2013;4(4):198-206.
34. Kollet O, Dar A, Lapidot T. The Multiple Roles of Osteoclasts in Host Defense: Bone Remodeling and Hematopoietic Stem Cell Mobilization. Annu Rev Immunol. 2007;25:51-69.
35. Mansour A, Abou-Ezzi G, Sitnicka E, W. Jacobsen SE, Wakkach A, Blin-Wakkach C. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med. 2012;209(3):537-549.
36. Miyamoto T. Regulators of osteoclast differ- entiation and cell-cell fusion. Keio J Med. 2011;60(4):101-105.
37. LiH,HongS,QianJ,ZhengY,YangJ,YiQ. Cross talk between the bone and immune systems: osteoclasts function as antigen-pre- senting cells and activate CD4+ and CD8+ T cells. Blood. 2010;116(2):210-217.
38. Kobayashi H, Butler JM, O’Donnell R, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 2010;12(11):1046-1056.
39. Winkler IG, Barbier V, Nowlan B, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18(11):1651-1657.
40. Kunisaki Y, Bruns I, Scheiermann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502 (7473):637-643.
41. Nombela-Arrieta C, Pivarnik G, Winkel B, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microen- vironment. Nat Cell Biol. 2013;15(5):533- 543.
42. Boulais P, Frenette P. Making sense of hematopoietic stem cell niches. Blood. 2015;125(17):2621-2630.
43. García-García A, de Castillejo CLF, Méndez- Ferrer S. BMSCs and hematopoiesis. Immunol Lett. 2015;168(2):129-135.
neoplasms. Blood. 2015;125(2):327-335.
50. Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self- reinforcing leukemic niche. Cell Stem Cell.
2013;13(3):285-299.
51. Kollet O, Vagima Y, D’Uva G, et al.
Physiologic corticosterone oscillations regu- late murine hematopoietic stem/progenitor cell proliferation and CXCL12 expression by bone marrow stromal progenitors. Leukemia. 2013;27(10):2006-2015.
52. Iwasaki H, Suda T. Hematopoietic stem cells and their niche. Cancer Science. 2009;100 (7):1166-1172.
53. Spanoudakis E, Papoutselis M, Bazdiara I, et al. The JAK2V617F point mutation increases the osteoclast forming ability of monocytes in patients with chronic myelo- proliferative neoplasms and makes their osteoclasts more susceptible to JAK2 inhi- bition. Mediterr J Hematol Infect Dis. 2018;10(1):e2018058.
54. Korn C, Méndez-Ferrer S. Myeloid malig- nancies and the microenvironment. Blood. 2017;129(7):811-822.
 44. Méndez-Ferrer S, Chow A, Merad M,
Frenette PS. Circadian rhythms influence 161.
hematopoietic stem cells. Curr Opin
Hematol. 2009;16(4):235-242.
45. Gattazzo F, Urciuolo A, Bonaldo P.
61. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloprolifer- ative neoplasms. Nature. 2014;512(7512):78-
Extracellular matrix: A dynamic microenvi-
ronment for stem cell niche. Biochim 81
Biophys Acta. 2014;1840(8):2506-2519.
46. Mead AJ, Mullally A. Myeloproliferative neoplasm stem cells. Blood. 2017;129(12):
1607-1616.
47. Mullally A, Poveromo L, Schneider RK, Al-
Shahrour F, Lane SW, Ebert BL. Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythemia vera. Blood. 2012;120(1):166-172.
48. Lundberg P, Takizawa H, Kubovcakova L, et al. Myeloproliferative neoplasms can be ini- tiated from a single hematopoietic stem cell expressing JAK2-V617F. J Exp Med. 2014;211(11):2213-2230.
49. Chen E, Schneider RK, Breyfogle LJ, et al. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative
62. Sánchez-Aguilera A, Arranz L, Martín-Pérez D, et al. Estrogen Signaling Selectively Induces Apoptosis of Hematopoietic Progenitors and Myeloid Neoplasms with- out Harming Steady-State Hematopoiesis. Cell Stem Cell. 2014;15(6):791-804.
63. Vannucchi AM, Bianchi L, Paoletti F, et al. A pathobiologic pathway linking thrombopoi- etin, GATA-1, and TGF-β1 in the develop- ment of myelofibrosis. Blood. 2005;105(9): 3493-3501.
64. Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K. The role of the extra- cellular matrix in primary myelofibrosis. Blood Cancer J. 2017;7(2):1-9.
65. Wang JC, Novetsky A, Chen C, Novetsky AD. Plasma matrix metalloproteinase and tissue inhibitor of metalloproteinase in patients with agnogenic myeloid metaplasia
55. Mitsumori T, Nozaki Y, Kawashima I, et al. Hypoxia inhibits JAK2V617F activation via suppression of SHP-2 function in myelopro- liferative neoplasm cells. Exp Hematol. 2014;42(9):783-792.
56. Velasco-Hernandez T, Tornero D, Cammenga J. Loss of HIF-1α accelerates murine FLT-3 ITD-induced myeloprolifera- tive neoplasia. Leukemia. 2015;29(12):2366- 2374.
57. Schepers K, Campbell TB, Passegue E. Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities. Cell Stem Cell. 2015;16(3):254-267.
58. Schneider RK, Mullally A, Dugourd A, et al. Gli1(+) Mesenchymal Stromal Cells Are a Key Driver of Bone Marrow Fibrosis and an Important Cellular Therapeutic Target. Cell Stem Cell. 2017;20(6):785-800.e8.
59. Ramos TL, Sánchez-Abarca LI, Rosón-Burgo B, et al. Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis. PLoS One. 2017;12(8): e0182470.
60. Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149-
 1198
  haematologica | 2020; 105(5)
  




























   36   37   38   39   40