Page 230 - Haematologica May 2020
P. 230

J. Edelmann et al. References
1. Hallek M, Shanafelt TD, Eichhorst B. Chronic lymphocytic leukaemia. Lancet. 2018;391(10129):1524-1537.
2. Parikh SA. Chronic lymphocytic leukemia treatment algorithm 2018. Blood Cancer J. 2018;8(10):93.
3. Woyach JA, Johnson AJ. Targeted therapies in CLL: mechanisms of resistance and strate- gies for management. Blood. 2015;126(4):471-477.
4. Burger JA, Landau DA, Taylor-Weiner A, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resist- ance to BTK inhibition. Nat Commun. 2016;7:11589.
5. Herling CD, Abedpour N, Weiss J, et al. Clonal dynamics towards the development of venetoclax resistance in chronic lympho- cytic leukemia. Nat Commun. 2018;9 (1):727.
6. Stilgenbauer S, Zenz T. Understanding and managing ultra high-risk chronic lympho- cytic leukemia. Hematology Am Soc Hematol Educ Program. 2010;2010:481-488.
7. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic charac- terization of CLL: a study on 506 cases analysed with chromosome banding analy- sis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007;21 (12):2442-2451.
8. Anderson MA, Tam C, Lew TE, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25): 3362-3370.
9. Thompson PA, O'Brien SM, Wierda WG, et al. Complex karyotype is a stronger predic- tor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib- based regimens. Cancer. 2015;121(20):3612- 3621.
10. Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lympho- cytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133(11):1205- 1216.
11. Gunnarsson R, Isaksson A, Mansouri M, et al. Large but not small copy-number alter- ations correlate to high-risk genomic aberra- tions and survival in chronic lymphocytic leukemia: a high-resolution genomic screen- ing of newly diagnosed patients. Leukemia. 2010;24(1):211-215.
12. Ouillette P, Collins R, Shakhan S, et al. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood. 2011;118(11):3051-3061.
13. Edelmann J, Holzmann K, Miller F, et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood. 2012;120(24): 4783-4794.
14. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolu- tion in progression and relapse. Nature. 2015;526(7574):525-530.
15. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220-228.
16. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GIS- TIC2.0 facilitates sensitive and confident
localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41.
17. Stilgenbauer S CF, Leblond V, Delmer A, et al. Alemtuzumab combined with dexam- ethasone, followed by alemtuzumab main- tenance or allo-SCT in “ultra high-risk” CLL: final results from the CLL2O phase II study. Blood. 2014;124 (21):1991.
18. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376 (9747):1164-1174.
19. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101-1110.
20. Steinbrecher D, Jebaraj BMC, Schneider C, et al. Telomere length in poor-risk chronic lymphocytic leukemia: associations with disease characteristics and outcome. Leuk Lymphoma. 2018;59(7):1614-1623.
21. Kelder T, van Iersel MP, Hanspers K, et al. WikiPathways: building research communi- ties on biological pathways. Nucleic Acids Res. 2012;40(Database issue):D1301-1307.
22. Kutmon M, Riutta A, Nunes N, et al. WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res. 2016;44(D1):D488-494.
23. van Iersel MP, Kelder T, Pico AR, et al. Presenting and exploring biological path- ways with PathVisio. BMC Bioinformatics. 2008;9:399.
24. Kutmon M, van Iersel MP, Bohler A, et al. PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput Biol. 2015;11(2): e1004085.
25. Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247- 3254.
26. Rausch T, Jones DT, Zapatka M, et al. Genome sequencing of pediatric medul- loblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012;148(1-2):59-71.
33. Hurlin PJ, Steingrimsson E, Copeland NG, Jenkins NA, Eisenman RN. Mga, a dual- specificity transcription factor that interacts with Max and contains a T-domain DNA- binding motif. EMBO J. 1999;18(24):7019- 7028.
34. Kao HY, Ordentlich P, Koyano-Nakagawa N, et al. A histone deacetylase corepressor complex regulates the Notch signal trans- duction pathway. Genes Dev. 1998;12 (15):2269-2277.
35. Oswald F, Kostezka U, Astrahantseff K, et al. SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J. 2002;21(20):5417-5426.
36. Borggrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci. 2009;66(10):1631-1646.
37. Kulic I, Robertson G, Chang L, et al. Loss of the Notch effector RBPJ promotes tumorige- nesis. J Exp Med. 2015;212(1):37-52.
38. Fabbri G, Holmes AB, Viganotti M, et al. Common nonmutational NOTCH1 activa- tion in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2017;114(14):E2911- E2919.
39. Palomero T, Lim WK, Odom DT, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A. 2006;103(48): 18261-18266.
40. Rand MD, Grimm LM, Artavanis-Tsakonas S, et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol. 2000;20(5):1825-1835.
41. Martel V, Guerci A, Humbert JC, et al. De novo methylation of tumour suppressor genes CDKN2A and CDKN2B is a rare find- ing in B-cell chronic lymphocytic leukaemia. Br J Haematol. 1997;99(2):320-324.
42. Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behav- ior. Ann Rev Cell Dev Biol. 2000;16:653-699.
43. Hannon GJ, Beach D. p15INK4B is a poten- tial effector of TGF-beta-induced cell cycle arrest. Nature. 1994;371(6494):257-261.
44. Cleveland JL, Sherr CJ. Antagonism of Myc functions by Arf. Cancer Cell. 2004;6(4):309-
   27. Chigrinova E, Rinaldi A, Kwee I, et al. Two
main genetic pathways lead to the transfor- 311.
mation of chronic lymphocytic leukemia to Richter syndrome. Blood. 2013;122(15): 2673-2682.
28. Fabbri G, Khiabanian H, Holmes AB, et al. Genetic lesions associated with chronic lym- phocytic leukemia transformation to Richter syndrome. J Exp Med. 2013;210(11):2273- 2288.
29. XinY,LiZ,ShenJ,ChanMT,WuWK. CCAT1: a pivotal oncogenic long non-cod- ing RNA in human cancers. Cell Prolif. 2016;49(3):255-260.
30. Chen Y, Xie H, Gao Q, Zhan H, Xiao H, Zou Y, et al. Colon cancer associated transcripts in human cancers. Biomed Pharmacother. 2017;94:531-540.
31. Kim T, Cui R, Jeon YJ, et al. Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci U S A. 2014;111(11):4173-4178.
32. De Paoli L, Cerri M, Monti S, et al. MGA, a suppressor of MYC, is recurrently inactivat- ed in high risk chronic lymphocytic leukemia. Leuk Lymphoma. 2013;54(5): 1087-1090.
45. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269-271.
46. Puente XS, Bea S, Valdes-Mas R, et al. Non- coding recurrent mutations in chronic lym- phocytic leukaemia. Nature. 2015;526 (7574):519-524.
47. Close V, Close W, Kugler SJ, et al. FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood. 2019;133(8):830-839.
48. Wu B, Slabicki M, Sellner L, et al. MED12 mutations and NOTCH signalling in chronic lymphocytic leukaemia. Br J Haematol. 2017;179(3):421-429.
49. Collu GM, Hidalgo-Sastre A, Acar A, et al. Dishevelled limits Notch signalling through inhibition of CSL. Development. 2012;139(23):4405-4415.
50. Wang L, Brooks AN, Fan J, et al. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell. 2016;30(5):750-763.
 1390
  haematologica | 2020; 105(5)
   










































   228   229   230   231   232