Page 133 - Haematologica May 2020
P. 133

BCR-ABL suppresses autophagy via BECLIN-1
    chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood. 2003; 101(12):4701-4707.
8. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have main- tained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029-1035.
9. de Lavallade H, Apperley JF, Khorashad JS, et al. Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol. 2008; 26(20):3358- 3363.
10. Holyoake TL, Helgason GV. Do we need more drugs for chronic myeloid leukemia? Immunol Rev. 2015;263(1):106-123.
11. Druker BJ, Guilhot F, O'Brien SG, et al. Five- year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408-2417.
12. Helgason GV, Karvela M, Holyoake TL. Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood. 2011;118(8):2035-2043.
13. Sheng Z, Ma L, Sun JE, Zhu LJ, Green MR. BCR-ABL suppresses autophagy through ATF5-mediated regulation of mTOR tran- scription. Blood. 2011;118(10):2840-2848.
14. Altman BJ, Jacobs SR, Mason EF, et al. Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemoge- nesis. Oncogene. 2011; 30(16):1855-1867.
15. Bellodi C, Lidonnici MR, Hamilton A, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 2009;119(5):1109-1123.
16. Yu Y, Yang L, Zhao M, et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia. 2012;26(8):1752-1760.
17. Mitchell R, Hopcroft LEM, Baquero P, et al. Targeting BCR-ABL-independent TKI resist- ance in chronic myeloid leukemia by mTOR and autophagy inhibition. J Natl Cancer Inst. 2018;110(5):467-478.
18. Karvela M, Baquero P, Kuntz EM, et al. ATG7 regulates energy metabolism, differ- entiation and survival of Philadelphia-chro- mosome-positive cells. Autophagy. 2016; 12(6):936-948.
19. He C, Levine B. The Beclin 1 interactome. Curr Opin Cell Biol. 2010;22(2):140-149.
20. Sun Q, Fan W, Zhong Q. Regulation of
Beclin 1 in autophagy. Autophagy. 2009;
5(5):713-716.
21. Zhong Y, Wang QJ, Li X, et al. Distinct reg-
ulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phos- phatidylinositol-3-kinase complex. Nat Cell Biol. 2009;11(4):468-476.
22. Zhong Y, Wang QJ, Yue Z. Atg14L and Rubicon: yin and yang of Beclin 1-mediated autophagy control. Autophagy. 2009; 5(6):890-891.
23. Matsunaga K, Saitoh T, Tabata K, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009; 11(4):385-396.
24. Grundler R, Thiede C, Miething C, Steudel C, Peschel C, Duyster J. Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood. 2003;102(2):646-651.
25. Illert AL, Kawaguchi H, Antinozzi C, et al. Targeted inactivation of nuclear interaction
partner of ALK disrupts meiotic prophase.
Development. 2012;139(14):2523-2534.
26. Illert AL, Zech M, Moll C, et al. Extracellular signal-regulated kinase 2 (ERK2) mediates phosphorylation and inactivation of nuclear interaction partner of anaplastic lymphoma kinase (NIPA) at G2/M. J Biol Chem.
2012;287(45):37997-38005.
27. Grundler R, Brault L, Gasser C, et al.
Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12- CXCR4-mediated homing and migration. J Exp Med. 2009;206(9):1957-1970.
28. Muller TA, Grundler R, Istvanffy R, et al. Lineage-specific STAT5 target gene activa- tion in hematopoietic progenitor cells pre- dicts the FLT3(+)-mediated leukemic pheno- type. Leukemia. 2016;30(8):1725-1733.
29. Illert AL, Albers C, Kreutmair S, et al. Grb10 is involved in BCR-ABL-positive leukemia in mice. Leukemia. 2015; 29(4):858-868.
30. Albers C, Illert AL, Miething C, et al. An RNAi-based system for loss-of-function analysis identifies Raf1 as a crucial mediator of BCR-ABL-driven leukemogenesis. Blood. 2011;118(8):2200-2210.
31. Liu S, Hartleben B, Kretz O, et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia- reperfusion injury. Autophagy. 2012; 8(5):826-837.
32. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313-326.
33. Ultimo S, Simioni C, Martelli AM, et al. PI3K isoform inhibition associated with anti Bcr-Abl drugs shows in vitro increased anti- leukemic activity in Philadelphia chromo- some-positive B-acute lymphoblastic leukemia cell lines. Oncotarget. 2017;8(14):23213-23227.
34. Morita M, Nishinaka Y, Kato I, et al. Dasatinib induces autophagy in mice with Bcr-Abl-positive leukemia. Int J Hematol. 2017;105(3):335-340.
35. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011; 18(4):571-580.
36. McKnight NC, Zhenyu Y. Beclin 1, an essen- tial component and master regulator of PI3K-III in health and disease. Curr Pathobiol Rep. 2013;1(4):231-238.
37. Uyar B, Weatheritt RJ, Dinkel H, Davey NE, Gibson TJ. Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer? Mol Biosyst. 2014;10(10):2626-2642.
38. McKnight NC, Zhong Y, Wold MS, et al. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet. 2014;10(10):e1004626.
39. Wei Y, An Z, Zou Z, et al. The stress-respon- sive kinases MAPKAPK2/MAPKAPK3 acti- vate starvation-induced autophagy through Beclin 1 phosphorylation. Elife. 2015;4.
40. Goussetis DJ, Gounaris E, Wu EJ, et al. Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood. 2012;120(17):3555-3562.
41. Liu X, Rothe K, Yen R, et al. A novel AHI-1- BCR-ABL-DNM2 complex regulates leukemic properties of primitive CML cells through enhanced cellular endocytosis and ROS-mediated autophagy. Leukemia. 2017; 31(11):2376-2387.
42. Wei Y, Zou Z, Becker N, et al. EGFR-mediat- ed Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 2013;154(6):1269-
1284.
43. Wang RC, Wei Y, An Z, et al. Akt-mediated
regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 2012;338(6109):956-959.
44. Kharas MG, Janes MR, Scarfone VM, et al. Ablation of PI3K blocks BCR-ABL leukemo- genesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells. J Clin Invest. 2008;118(9):3038-3050.
45. Klejman A, Rushen L, Morrione A, Slupianek A, Skorski T. Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene. 2002;21(38):5868-5876.
46. Mitchell R, Hopcroft LEM, Baquero P, et al. Targeting BCR-ABL-Independent TKI Resistance in Chronic Myeloid Leukemia by mTOR and Autophagy Inhibition. J Natl Cancer Inst. 2018;110(5):467-478.
47. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploin- sufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077-15082.
48. Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999; 402(6762):672-676.
49. Dang CV. Links between metabolism and cancer. Genes Dev. 2012;26(9):877-890.
50. Liu J, Xia H, Kim M, et al. Beclin1 controls
the levels of p53 by regulating the deubiqui- tination activity of USP10 and USP13. Cell. 2011;147(1):223-234.
51. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809-1820.
52. Ahn CH, Jeong EG, Lee JW, et al. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS. 2007;115(12):1344-1349.
53. Shen Y, Li DD, Wang LL, Deng R, Zhu XF. Decreased expression of autophagy-related proteins in malignant epithelial ovarian can- cer. Autophagy. 2008;4(8):1067-1068.
54. Won KY, Kim GY, Kim YW, Song JY, Lim SJ. Clinicopathologic correlation of beclin-1 and bcl-2 expression in human breast cancer. Hum Pathol. 2010;41(1):107-112.
55. Tang H, Sebti S, Titone R, et al. Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor- negative subtypes and poor prognosis. EBioMedicine. 2015;2(3):255-263.
56. Diaz-Blanco E, Bruns I, Neumann F, et al. Molecular signature of CD34(+) hematopoi- etic stem and progenitor cells of patients with CML in chronic phase. Leukemia. 2007;21(3):494-504.
57. Tan X, Thapa N, Sun Y, Anderson RA. A kinase-independent role for EGF receptor in autophagy initiation. Cell. 2015;160(1- 2):145-160.
58. Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and pro- survival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 2010;6(3):322-329.
59. Wang C, Hu Q, Shen HM. Pharmacological inhibitors of autophagy as novel cancer ther- apeutic agents. Pharmacol Res. 2016; 105:164-175.
60. Pasquier B. Autophagy inhibitors. Cell Mol Life Sci. 2016;73(5):985-1001.
61. Liu Q, Chen L, Atkinson JM, Claxton DF, Wang HG. Atg5-dependent autophagy con- tributes to the development of acute myeloid leukemia in an MLL-AF9-driven mouse model. Cell Death Dis. 2016; 7(9):e2361.
 haematologica | 2020; 105(5)
1293
   






























   131   132   133   134   135