Page 124 - Haematologica May 2020
P. 124

B.Z. Carter et al. References
1. Heisterkamp N, Stephenson JR, Groffen J, et al. Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature. 1983;306(5940):239-242.
2. Nowell PC, Hungerford DA. Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J Natl Cancer Inst. 1961;27:1013-1035.
3. Rowley JD. Letter: A new consistent chro- mosomal abnormality in chronic myeloge- nous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290-293.
4. Holyoake T, Jiang X, Eaves C, Eaves A. Isolation of a highly quiescent subpopula- tion of primitive leukemic cells in chronic myeloid leukemia. Blood. 1999;94(6):2056- 2064.
5. Copland M, Hamilton A, Elrick LJ, et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in pri- mary CML but does not eliminate the qui- escent fraction. Blood. 2006;107(11):4532- 4539.
6. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121(1):396-409.
7. Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99(1):319-325.
8. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multi- centre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029-1035.
9. Rea D, Nicolini FE, Tulliez M, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood. 2017;129(7):846-854.
10. Ross DM, Branford S, Seymour JF, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515- 522.
11. Saussele S, Richter J, Hochhaus A, Mahon FX. The concept of treatment-free remis- sion in chronic myeloid leukemia. Leukemia. 2016;30(8):1638-1647.
12. Carter BZ, Andreeff M. Eradication of CML stem cells. Oncoscience. 2016;3(11-12):313- 315.
13. Hamad A, Sahli Z, El Sabban M, Mouteirik M, Nasr R. Emerging therapeutic strategies for targeting chronic myeloid leukemia stem cells. Stem Cells Int. 2013;2013: 724360.
14. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood. 2017;129(12): 1595-1606.
15. Zhang B, Strauss AC, Chu S, et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell. 2010;17(5):427-442.
16. Zhou H, Mak PY, Mu H, et al. Combined inhibition of beta-catenin and Bcr-Abl syner- gistically targets tyrosine kinase inhibitor- resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo. Leukemia. 2017;31 (10):2065-2074.
17. Goff DJ, Court Recart A, Sadarangani A, et al. A Pan-BCL2 inhibitor renders bone-mar- row-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013;12(3):316-328.
18. Kuroda J, Kimura S, Strasser A, et al. Apoptosis-based dual molecular targeting by INNO-406, a second-generation Bcr-Abl inhibitor, and ABT-737, an inhibitor of anti- apoptotic Bcl-2 proteins, against Bcr-Abl- positive leukemia. Cell Death Differ. 2007;14(9):1667-1677.
19. Mak DH, Wang RY, Schober WD, et al. Activation of apoptosis signaling eliminates CD34+ progenitor cells in blast crisis CML independent of response to tyrosine kinase inhibitors. Leukemia. 2012;26(4):788-794.
20. Carter BZ, Mak PY, Mu H, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8(355):355ra117.
21. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80(2):293- 299.
22. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS. BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. 2002;4(11):842-849.
23. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A. 2003;100(4):1931- 1936.
24. Abraham SA, Hopcroft LE, Carrick E, et al. Dual targeting of p53 and c-MYC selective- ly eliminates leukaemic stem cells. Nature. 2016;534(7607):341-346.
25. Li L, Wang L, Li L, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 2012;21(2):266- 281.
26. Peterson LF, Mitrikeska E, Giannola D, et al. p53 stabilization induces apoptosis in chronic myeloid leukemia blast crisis cells. Leukemia. 2011;25(5):761-769.
27. Carter BZ, Mak PY, Mak DH, et al. Synergistic effects of p53 activation via MDM2 inhibition in combination with inhibition of Bcl-2 or Bcr-Abl in CD34+ proliferating and quiescent chronic myeloid leukemia blast crisis cells. Oncotarget. 2015;6(31):30487-30499.
28. Huettner CS, Koschmieder S, Iwasaki H, et al. Inducible expression of BCR/ABL using human CD34 regulatory elements results in a megakaryocytic myeloproliferative syn- drome. Blood. 2003;102(9):3363-3370.
29. Koschmieder S, Gottgens B, Zhang P, et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR- ABL leukemogenesis. Blood. 2005;105(1): 324-334.
30. Han L, Qiu P, Zeng Z, et al. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3- ITD-mutated AML stem/progenitor cells.
Cytometry A. 2015;87(4):346-356.
31. Ishizawa J, Kojima K, McQueen T, et al. Mitochondrial Profiling of Acute Myeloid Leukemia in the Assessment of Response to Apoptosis Modulating Drugs. PLoS One.
2015;10(9):e0138377.
32. Hu Z, Pan XF, Wu FQ, et al. Synergy
between proteasome inhibitors and ima- tinib mesylate in chronic myeloid leukemia. PLoS One. 2009;4(7):e6257.
33. Levav-Cohen Y, Goldberg Z, Zuckerman V, Grossman T, Haupt S, Haupt Y. C-Abl as a modulator of p53. Biochem Biophys Res Commun. 2005;331(3):737-749.
34. Ricciardi MR, Salvestrini V, Licchetta R, et al. Differential proteomic profile of leukemic CD34+ progenitor cells from chronic myeloid leukemia patients. Oncotarget. 2018;9(31):21758-21769.
35. Kurosu T, Wu N, Oshikawa G, Kagechika H, Miura O. Enhancement of imatinib- induced apoptosis of BCR/ABL-expressing cells by nutlin-3 through synergistic activa- tion of the mitochondrial apoptotic path- way. Apoptosis. 2010;15(5):608-620.
36. Carter BZ, Mak DH, Schober WD, et al. Simultaneous activation of p53 and inhibi- tion of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood. 2010;115(2):306-314.
37. Wendel HG, de Stanchina E, Cepero E, et al. Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci U S A. 2006;103(19):7444-7449.
38. You L, Liu H, Huang J, et al. The novel anti- cancer agent JNJ-26854165 is active in chronic myeloid leukemic cells with unmu- tated BCR/ABL and T315I mutant BCR/ABL through promoting proteosomal degradation of BCR/ABL proteins. Oncotarget. 2017;8(5):7777-7790.
39. Jones RJ, Gu D, Bjorklund CC, et al. The novel anticancer agent JNJ-26854165 induces cell death through inhibition of cholesterol transport and degradation of ABCA1. J Pharmacol Exp Ther. 2013;346(3):381-392.
40. Kojima K, Burks JK, Arts J, Andreeff M. The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther. 2010;9(9): 2545-2557.
41. Lehman JA, Hauck PM, Gendron JM, et al. Serdemetan antagonizes the Mdm2- HIF1alpha axis leading to decreased levels of glycolytic enzymes. PLoS One. 2013;8(9):e74741.
42. Miyazaki M, Uoto K, Sugimoto Y, et al. Discovery of DS-5272 as a promising can- didate: A potent and orally active p53- MDM2 interaction inhibitor. Bioorg Med Chem. 2015;23(10):2360-2367.
43. Zhang H, Gu L, Liu T, Chiang KY, Zhou M. Inhibition of MDM2 by nilotinib con- tributes to cytotoxicity in both Philadelphia-positive and negative acute lymphoblastic leukemia. PLoS One. 2014;9(6):e100960.
44. Kojima K, McQueen T, Chen Y, et al. p53 activation of mesenchymal stromal cells partially abrogates microenvironment- mediated resistance to FLT3 inhibition in AML through HIF-1alpha-mediated down- regulation of CXCL12. Blood. 2011; 118(16):4431-4439.
    1284
  haematologica | 2020; 105(5)
   
















































   122   123   124   125   126