Page 212 - Haematologica April 2020
P. 212

V. Griggio et al.
2016;8(5):8921-8946.
22. Amelio I, Melino G. The p53 family and the
hypoxia-inducible factors (HIFs): determi- nants of cancer progression. Trends Biochem Sci. 2015;40(8):425-434.
23. Salnikow K, Costa M, Figg WD, Blagosklonny MV. Hyperinducibility of hypoxia-responsive genes without p53/p21- dependent checkpoint in aggressive prostate cancer. Cancer Res. 2000;60(20):5630-5634.
24. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008; 111(12):5446-5456.
25. Bomben R, Dal-Bo M, Benedetti D, et al. Expression of mutated IGHV3-23 genes in chronic lymphocytic leukemia identifies a disease subset with peculiar clinical and bio- logical features. Clin Cancer Res. 2010; 16(2):620-628.
26. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowl- edge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550.
27. Semenza GL, Jiang BH, Leung SW, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996;271(51):32529-32537.
28. Dal Bo M, Pozzo F, Bomben R, et al. ARHG- DIA, a mutant TP53-associated Rho GDP dissociation inhibitor, is over-expressed in gene expression profiles of TP53 disrupted chronic lymphocytic leukaemia cells. Br J Haematol. 2013;161(4):596-599.
29. Gross C, Dubois-Pot H, Wasylyk B. The ter- nary complex factor Net/Elk-3 participates in the transcriptional response to hypoxia and regulates HIF-1 alpha. Oncogene. 2008; 27(9):1333-1341.
30. Liu W, Xin H, Eckert DT, Brown JA, Gnarra
JR. Hypoxia and cell cycle regulation of the von Hippel-Lindau tumor suppressor. Oncogene. 2011;30(1):21-31.
40. Döhner H, Fischer K, Bentz M, et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood. 1995;85(6):1580-1589.
41. Zenz T, Häbe S, Denzel T, et al. Detailed analysis of p53 pathway defects in fludara- bine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood. 2009;114(13):2589-2597.
42. Manso BA, Zhang H, Mikkelson MG, et al. Bone marrow hematopoietic dysfunction in untreated chronic lymphocytic leukemia patients. Leukemia. 2019;33(3):638-652.
43. Eichhorst B, Robak T, Montserrat E, et al. appendix 6: Chronic lymphocytic leukaemia: eUpdate published online September 2016 (http://www.esmo.org/Guidelines/Haemat ological-Malignancies). Ann Oncol. 2016; 27(suppl 5):v143-v144.
44. Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015; 26 Suppl 5:v78-84.
45. NCCN Guidelines Insights: chronic lym- phocytic leukemia/small lymphocytic leukemia, version 1.2017. http://www.jnccn.org/content/15/3/293.lon g (accessed February 11, 2018).
46. Woyach JA, Ruppert AS, Guinn D, et al. BTKC481S-mediated resistance to Ibrutinib in chronic lymphocytic leukemia. J Clin Oncol. 2017;35(13):1437-1443.
47. Jones D, Woyach JA, Zhao W, et al. PLCG2 C2 domain mutations co-occur with BTK and PLCG2 resistance mutations in chronic lymphocytic leukemia undergoing ibrutinib treatment. Leukemia. 2017;31(7):1645-1647.
48. Byrd JC, Furman RR, Coutre SE, et al. Three- year follow-up of treatment-naïve and previ- ously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015; 125(16):2497-2506.
31. Turgut B, Vural O, Pala FS, et al. 17p Deletion is associated with resistance of B- cell chronic lymphocytic leukemia cells to in vitro fludarabine-induced apoptosis. Leuk Lymphoma. 2007;48(2):311-320.
32. Dietrich S, Oleś M, Lu J, et al. Drug-pertur- bation-based stratification of blood cancer. J Clin Invest. 2018;128(1):427-445.
33. Nadeu F, Delgado J, Royo C, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016; 127(17):2122-2130.
34. Guarini A, Peragine N, Messina M, et al. Unravelling the suboptimal response of TP53-mutated chronic lymphocytic leukaemia to ibrutinib. Br J Haematol. 2019;184(3):392-396.
35. Kim J-Y, Lee J-Y. Targeting Tumor Adaption to Chronic Hypoxia: Implications for Drug Resistance, and How It Can Be Overcome. Int J Mol Sci. 2017;18(9):1854.
36. Muz B, de la Puente P, Azab F, Luderer M, Azab AK. The role of hypoxia and exploita- tion of the hypoxic environment in hemato- logic malignancies. Mol Cancer Res. 2014;12(10):1347-1354.
37. Kontos CK, Papageorgiou SG, Diamantopoulos MA, et al. mRNA overex- pression of the hypoxia inducible factor 1 alpha subunit gene (HIF1A): An independent predictor of poor overall survival in chronic lymphocytic leukemia. Leuk Res. 2017; 53:65-73.
38. Kuschel A, Simon P, Tug S. Functional regu- lation of HIF-1α under normoxia--is there more than post-translational regulation? J Cell Physiol. 2012;227(2):514-524.
39. Ellinghaus P, Heisler I, Unterschemmann K, et al. BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibi- tion of mitochondrial complex I. Cancer Med. 2013;2(5):611-624.
1054
haematologica | 2020; 105(4)


































































































   210   211   212   213   214