Page 170 - Haematologica April 2020
P. 170

V.P. Vaikari et al.
acute myeloid leukemia stem cells. Cell
Stem Cell. 2010;7(6):708-717.
32. Bernard G, Zoccola D, Deckert M, et al. The
E2 molecule (CD99) specifically triggers homotypic aggregation of CD4+ CD8+ thy- mocytes. J Immunol. 1995;154(1):26-32.
33. Cerisano V, Aalto Y, Perdichizzi S, et al. Molecular mechanisms of CD99-induced caspase-independent cell death and cell-cell adhesion in Ewing's sarcoma cells: actin and zyxin as key intracellular mediators. Oncogene. 2004;23(33):5664-5674.
34. Byun HJ, Hong IK, Kim E, et al. A splice vari- ant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-depen- dent AP-1 activation signaling pathways. J Biol Chem. 2006;281(46):34833-34847.
35. Manara MC, Terracciano M, Mancarella C, et al. CD99 triggering induces methuosis of Ewing sarcoma cells through IGF- 1R/RAS/Rac1 signaling. Oncotarget. 2016;7 (48):79925-79942.
36. Guerzoni C, Fiori V, Terracciano M, et al. CD99 triggering in Ewing sarcoma delivers a lethal signal through p53 pathway reactiva- tion and cooperates with doxorubicin. Clin Cancer Res. 2015;21(1):146-156.
37. Lee KJ, Kim Y, Yoo YH, et al. CD99-Derived Agonist Ligands Inhibit Fibronectin-Induced Activation of beta1 Integrin through the
Protein Kinase A/SHP2/Extracellular Signal- Regulated Kinase/PTPN12/Focal Adhesion Kinase Signaling Pathway. Mol Cell Biol. 2017;37(14).
38. Warsito D, Sjostrom S, Andersson S, Larsson O, Sehat B. Nuclear IGF1R is a transcription- al co-activator of LEF1/TCF. EMBO Rep. 2012;13(3):244-250.
39. Kavalar R, Pohar Marinsek Z, Jereb B, Cagran B, Golouh R. Prognostic value of immunohistochemistry in the Ewing's sar- coma family of tumors. Med Sci Monit. 2009;15(8):CR442-452.
40. Angelini DF, Ottone T, Guerrera G, et al. A Leukemia-Associated CD34/CD123/CD25/ CD99+ Immunophenotype Identifies FLT3- Mutated Clones in Acute Myeloid Leukemia. Clin Cancer Res. 2015;21(17): 3977-3985.
41. Kadia TM, Jain P, Ravandi F, et al. TP53 mutations in newly diagnosed Acute Myeloid Leukemia –Clinico-molecular char- acteristics, response to therapy, and out- comes. Cancer. 2016;122(22):3484-3491.
42. Scotlandi K, Zuntini M, Manara MC, et al. CD99 isoforms dictate opposite functions in tumour malignancy and metastases by acti- vating or repressing c-Src kinase activity. Oncogene. 2007;26(46):6604-6618.
43. Lee EJ, Lee HG, Park SH, Choi EY. CD99 type II is a determining factor for the differ-
entiation of primitive neuroectodermal cells.
Exp Mol Med. 2003;35(5):438-447.
44. Kim SH, Shin YK, Lee IS, et al. Viral latent membrane protein 1 (LMP-1)-induced CD99 down-regulation in B cells leads to the gen- eration of cells with Hodgkin's and Reed- Sternberg phenotype. Blood. 2000;95(1):
294-300.
45. Michaloglou C, Vredeveld LC, Soengas MS,
et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436(7051):720-724.
46. Hahn MJ, Yoon SS, Sohn HW, et al. Differential activation of MAP kinase family members triggered by CD99 engagement. FEBS Lett. 2000;470(3):350-354
47. Sciandra M, Marino MT, Manara MC, et al. CD99 drives terminal differentiation of osteosarcoma cells by acting as a spatial reg- ulator of ERK 1/2. J Bone Miner Res. 2014;29(5):1295-1309.
48. Rocchi A, Manara MC, Sciandra M, et al. CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. J Clin Invest. 2010;120(3):668-680.
49. Lee HJ, Kim E, Jee B, et al. Functional involvement of src and focal adhesion kinase in a CD99 splice variant-induced motility of human breast cancer cells. Exp Mol Med. 2002;34(3):177-183.
1012
haematologica | 2020; 105(4)


































































































   168   169   170   171   172