Page 128 - Haematologica April 2020
P. 128

N. van Leeuwen-Kerkhoff et al.
Clin Oncol. 2011;29(21):2897-2903.
13. Zambetti NA, Ping Z, Chen S, et al. Mesenchymal inflammation drives genotox- ic stress in hematopoietic stem cells and pre- dicts disease evolution in human pre- leukemia. Cell Stem Cell. 2016;19(5):613-
627.
14. Basiorka AA, McGraw KL, Eksioglu EA, et
al. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood. 2016;128(25):2960-2975.
15. Shetty V, Hussaini S, Alvi S, et al. Excessive apoptosis, increased phagocytosis, nuclear inclusion bodies and cylindrical confronting cisternae in bone marrow biopsies of myelodysplastic syndrome patients. Br J Haematol. 2002;116(4):817-825.
16. Zang DY, Goodwin RG, Loken MR, Bryant E, Deeg HJ. Expression of tumor necrosis factor-related apoptosis-inducing ligand, Apo2L, and its receptors in myelodysplastic syndrome: effects on in vitro hemopoiesis. Blood. 2001;98(10):3058-3065.
17. Dimicoli S, Wei Y, Bueso-Ramos C, et al. Overexpression of the toll-like receptor (TLR) signaling adaptor MYD88, but lack of genetic mutation, in myelodysplastic syn- dromes. PLoS One. 2013;8(8):e71120.
18. Gañán-Gómez I, Wei Y, Yang H, et al. Overexpression of miR-125a in myelodys- plastic syndrome CD34+ cells modulates NF-κB activation and enhances erythroid differentiation Arrest. PLoS One. 2014;9(4): e93404.
19. Wei Y, Dimicoli S, Bueso-Ramos C, et al. Toll-like receptor alterations in myelodys- plastic syndrome. Leukemia. 2013;27(9): 1832-1840.
20. Maratheftis CI, Andreakos E, Moutsopoulos HM, Voulgarelis M. Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin Cancer Res. 2007;13(4):1154-1160.
21. Gañán-Gómez I, Wei Y, Starczynowski DT, et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia. 2015;29(7):1458-1469.
22. Kondo A, Yamashita T, Tamura H, et al. Interferon-γ and tumor necrosis factor-a induce an immunoinhibitory molecule, B7- H1, via nuclear factor-κB activation in blasts in myelodysplastic syndromes. Blood. 2010;116(7):1124-1131.
23. Navas TA, Mohindru M, Estes M, et al. Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood. 2006;108
(13):4170-4177.
24. Navas TA, Zhou L, Estes M, et al. Inhibition
of p38alpha MAPK disrupts the pathological loop of proinflammatory factor production in the myelodysplastic syndrome bone mar- row microenvironment. Leuk Lymphoma. 2008;49(10):1963-1975.
25. Velegraki M, Papakonstanti E, Mavroudi I, et al. Impaired clearance of apoptotic cells leads to HMGB1 release in the bone marrow of patients with myelodysplastic syndromes and induces TLR4-mediated cytokine pro- duction. Haematologica. 2013;98(8):1206- 1215.
26. Shi C-S, Shi G-Y, Hsiao H-M, et al. Lectin- like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutral- izes lipopolysaccharide-induced inflamma- tory response. Blood. 2008;112(9):3661- 3670.
27. van de Wouwer M, Plaisance S, de Vriese A, et al. The lectin-like domain of thrombo- modulin interferes with complement activa- tion and protects against arthritis. J Thromb Haemost. 2006;4(8):1813-1824.
28. Wang H, Vinnikov I, Shahzad K, et al. The lectin-like domain of thrombomodulin ame- liorates diabetic glomerulopathy via comple- ment inhibition. Thromb Haemost. 2012;108(6):1141-1153.
29. Zhang Y, Weiler-Guettler H, Chen J, et al. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest. 1998;101(7):1301- 1309.
30. Horowitz N a, Blevins E a, Miller WM, et al. Thrombomodulin is a determinant of metastasis through a mechanism linked to the thrombin binding domain but not the lectin-like domain. Blood. 2011;118(10): 2889-2895.
31. Hanly M, Redmond M, Winter DC, et al. Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival. Br J Cancer. 2006;94(9):1320-1325.
32. Dzionek A, Fuchs A, Schmidt P, et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol. 2000;165(11):6037-6046.
33. MacDonald KPA, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DNJ. Characterization of human blood dendritic cell subsets. Blood. 2002;100(13):4512-4520.
34. Jongbloed SL, Kassianos AJ, McDonald KJ, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell anti-
gens. J Exp Med. 2010;207(6):1247-1260. 35. van de Ven R, Lindenberg JJ, Oosterhoff D, de Gruijl TD. Dendritic cell plasticity in tumor-conditioned skin: CD14+ cells at the cross-roads of immune activation and sup-
pression. Front Immunol. 2013;(4):403.
36. Lindenberg JJ, van de Ven R, Lougheed SM, et al. Functional characterization of a STAT3-dependent dendritic cell-derived CD14+ cell population arising upon IL-10- driven maturation. Oncoimmunology. 2013;
2(4):e23837.
37. Ziegler-Heitbrock L, Ancuta P, Crowe S, et
al. Nomenclature of monocytes and dendrit-
ic cells in blood. Blood. 2010;116(16):e74-80. 38. Hofer TP, Zawada AM, Frankenberger M, et al. slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor muta-
tion. Blood. 2015;126(24):2601-2611.
39. Van Der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res.
2008;9(nov):2579-2605.
40. Amir ED, Davis KL, Tadmor MD, et al.
viSNE enables visualization of high dimen- sional single-cell data and reveals phenotyp- ic heterogeneity of leukemia. Nat Biotechnol. 2013;31(6):545-552.
41. Qiu P, Simonds EF, Bendall SC, et al. Extracting a cellular hierarchy from high- dimensional cytometry data with SPADE. Nat Biotechnol. 2011;29(10):886-891.
42. Kordasti S, Costantini B, Seidl T, et al. Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment. Blood. 2016;128(9):1193-1205.
43. Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom. 2010; Chapter 10:Unit10.17.
44. Diggins KE, Greenplate AR, Leelatian N, Wogsland CE, Irish JM. Characterizing cell subsets using marker enrichment modeling. Nat Methods. 2017;14(3):275-278.
45. Conway EM, Van De Wouwer M, Pollefeyt S, et al. The lectin-like domain of thrombo- modulin confers protection from neutrophil- mediated tissue damage by suppressing adhesion molecule expression via nuclear fac- tor kappaB and mitogen-activated protein kinase pathways. J Exp Med. 2002;196(5): 565-577.
46. Talati C, Zhang L, Shaheen G, et al. Monocyte subset analysis accurately distin- guishes CMML from MDS and is associated with a favorable MDS prognosis. Blood. 2017;129(13):1881-1883.
970
haematologica | 2020; 105(4)


































































































   126   127   128   129   130