Page 305 - Haematologica March 2020
P. 305

CD36 activates platelet PDE3A
References
1. Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93(1):141-147.
2. Jackson SP. Arterial thrombosis--insidious, unpredictable and deadly. Nat Med. 2011; 17(11):1423-1436.
3. Davì G, Romano M, Mezzetti A, et al. Increased levels of soluble P-selectin in hypercholesterolemic patients. Circulation. 1998;97(10):953-957.
4. Carvalho AC, Colman RW, Lees RS. Platelet function in hyperlipoproteinemia. N Engl J Med. 1974;290(8):434-438.
5. Colas R, Sassolas A, Guichardant M, et al. LDL from obese patients with the metabolic syndrome show increased lipid peroxidation
and activate platelets. Diabetogia. 2011;54(11):2931-2940.
6. Chan H-CC, Ke L-YY, Chu C-SS, et al. Highly electronegative LDL from patients with {ST-elevation} myocardial infarction triggers platelet activation and aggregation. Blood. 2013;122(22):3632-3641.
7. Ardlie NG, Selley ML, Simons LA. Platelet activation by oxidatively modified low den- sity lipoproteins. Atherosclerosis.1989;76(2– 3):117-124.
8. Chen R, Chen X, Salomon RG, M, McIntyre T. Platelet activation by low concentrations of intact oxidized LDL particles involves the PAF receptor. Arterioscler. Thromb Vasc Biol. 2009;29(3):363-371.
9. Naseem KM, Goodall AH, Bruckdorfer KR. Differential effects of native and oxidatively modified low-density lipoproteins on platelet function. Platelets. 1997;8(2–3):163–173.
10. van Willigen G, Gorter G, Akkerman JW. LDLs increase the exposure of fibrinogen binding sites on platelets and secretion of dense granules. Arterioscler Thomb. 1994;14(1):41–46.
11. Podrez EA, Byzova T V, Febbraio M, et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med. 2007;13(9):1086–1095.
12. Korporaal S, Eck M, Adelmeijer J, et al. Platelet Activation by Oxidized Low Density Lipoprotein Is Mediated by Cd36 and Scavenger {Receptor-A}. Arterioscler. Thromb Vasc Biol. 2007;27(11):2476–2483.
13. Chen K, Febbraio M, Li W, Silverstein RL. A Specific CD36-Dependent Signaling Pathway Is Required for Platelet Activation by Oxidized Low-Density Lipoprotein. Circ Res. 2008;102(12):1512–1519.
14. Wraith KS, Magwenzi S, Aburima A, et al. Oxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine kinase and Rho kinase-sig- naling pathways. Blood. 2013; 122(4):580– 589.
15. Biswas S, Zimman A, Gao D, Byzova T V, Podrez EA. TLR2 Plays a Key Role in Platelet Hyperreactivity and Accelerated Thrombosis
Associated With Hyperlipidemia. Circ Res.
2017;121(8):951–962.
16. Chen K, Li W, Major J, et al. Vav guanine
nucleotide exchange factors link hyperlipi- demia and a prothrombotic state. Blood. 2011;117(21):5744–5750.
17. Magwenzi S, Woodward C, Wraith KS, et al. Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cas- cade. Blood. 2015;125(17):2693–2703.
18. Yang M, Cooley BC, Li W, et al. Platelet CD36 promotes thrombosis by activating redox sensor ERK5 in hyperlipidemic condi- tions. Blood. 2017;129(21):2917–2927.
19. Yang M, Kholmukhamedov A, Schulte ML, et al. Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo. Blood Adv. 2018;2(21):2848–2861.
20. Raslan Z, Naseem KM. The control of blood platelets by cAMP signalling. Biochem. J Trans. 2014;42(2):289–294.
21. Beck F, Geiger J, Gambaryan S, et al. Time- resolved characterization of cAMP/PKA- dependent signaling reveals that platelet inhi- bition is a concerted process involving multi- ple signaling pathways. 2014;123(5):e1–e10.
22. Beca S, Ahmad F, Shen W, et al. Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium {ATPase} type 2a signaling complexes in mouse heart. Circ Res. 2013;112(2):289–297.
23. Sim DS, Glenn M-S, Furie BC, Furie B, Flaumenhaft R. Initial accumulation of platelets during arterial thrombus formation in vivo is inhibited by elevation of basal cAMP levels. Blood. 2004;103(6):2127–2134.
24. Spurgeon BE, Aburima A, Oberprieler NG, Taskén K, Naseem KM. Multiplexed phos- phospecific flow cytometry enables large- scale signaling profiling and drug screening in blood platelets. J Thromb Haemost. 2014;12(10):1733–1743.
25. Haslam RJ, Dickinson NT, Jang EK. Cyclic nucleotides and phosphodiesterases in platelets. Thromb Haemost. 1999; 82(2):412– 423.
26. Conti M, Beavo J. Biochemistry and Physiology of Cyclic Nucleotide Phosphodiesterases: Essential Components in Cyclic Nucleotide Signaling. Annu Rev Biochem. 2007;76(1):481–511.
27. Butt E, Abel K, Krieger M, et al. cAMP- and cGMP-dependent protein kinase phosphory- lation sites of the focal adhesion vasodilator- stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem. 1994;269(20):14509–14517.
28. Chen K, Febbraio M, Li W, Silverstein RL. A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ Res. 2008;102(12):1512–1519.
29. Podrez E a, Byzova T V, Febbraio M, et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat
Med. 2007;13(9):1086–1095.
30. Butt E, Abel K, Krieger M, Palm D, et al.
cAMP-and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem. 1994;269(20):14509-14517.
31. Hunter RW, Carol M, Hers I. Protein Kinase C-mediated Phosphorylation and Activation of PDE3A Regulate {cAMP} Levels in Human Platelets. J Biol Chem. 2009;284(18):12339– 12348.
32. Csányi G, Gajda M, Magdalena F-Z, et al. Functional alterations in endothelial NO, PGI2 and EDHF pathways in aorta in {ApoE/LDLR-/- mice. Prostaglandins Other Lipid Mediat. 2012;98(3–4):107–115.
33. Nakano A, Kawashima H, Miyake Y, et al. 123I–Labeled oxLDL Is Widely Distributed Throughout the Whole Body in Mice. Nucl Med Mol Imaging. 2018;52(2):144-153.
34. Badrnya S, Schrottmaier WC, Kral JB, et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler. Thromb Vasc Biol. 2014;34(3):571–580.
35. Shen M-YY, Chen F-YY, Hsu J-FF, et al. Plasma L5 levels are elevated in ischemic stroke patients and enhance platelet aggrega- tion. Blood. 2016;127(10):1336–1345.
36. Colli S, Lombroso M, Maderna P, Tremoli E, Nicosia S. Effects of PGI2 on platelet aggrega- tion and adenylate cyclase activity in human type {IIa} hypercholesterolemia. Biochem Pharmacol. 1983;32(13):1989–1993.
37. Sinzinger H, Schernthaner G, Kaliman J. Sensitivity of platelets to prostaglandins in cornary heart disease and angina pectoris. Prostaglandins. 1981;22(5):773–781.
38. Mehta J, Mehta P, Conti CR. Platelet function studies in coronary heart disease. {IX.} Increased platelet prostaglandin generation and abnormal platelet sensitivity to prostacy- clin and endoperoxide analog in angina pec- toris. Am J Cardiol. 1980;46(6):943–947.
39. Furberg CD, Psaty BM, A FG. Parecoxib, valdecoxib, and cardiovascular risk. Circulation. 2005;111(3):249.
40. Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50(4):524–537.
41. Araki S, Matsuno H, Haneda M, et al. Cilostazol attenuates spontaneous microag- gregation of platelets in type 2 diabetic patients with insufficient platelet response to aspirin. Diabetes Care. 2013;36(7):e92-3.
42. Park KW, Kang S-H, Park JJ, et al. Adjunctive Cilostazol Versus Double-Dose Clopidogrel After Drug-Eluting Stent Implantation. JACC Cardiovasc Interv. 2013;6(9):932–942.
43. Angiolillo DJ, Capranzano P, Ferreiro JL, et al. Impact of adjunctive cilostazol therapy on platelet function profiles in patients with and without diabetes mellitus on aspirin and clopidogrel therapy. Thromb Haemost. 2011;106(2):253–262.
haematologica | 2020; 105(3)
819


































































































   303   304   305   306   307