Page 281 - Haematologica March 2020
P. 281

Kinome profiling to target Multiple Myeloma
gression and death. Blood. 2001;97(8):
2522-2523.
35. Decaux O, Lodé L, Magrangeas F, et al.
Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability sig- natures in high-risk patients and hyper- diploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myélome. J Clin Oncol. 2008;26(29):4798- 4805.
36. Pei X-Y, Dai Y, Youssefian LE, et al. Cytokinetically quiescent (G0/G1) human multiple myeloma cells are susceptible to simultaneous inhibition of Chk1 and MEK1/2. Blood. 2011;118(19):5189-5200.
37. Gray D, Jubb AM, Hogue D, et al. Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers. Cancer Res. 2005;65(21):9751- 9761.
38. Stefka AT, Park J-H, Matsuo Y, et al. Anti- myeloma activity of MELK inhibitor OTS167: effects on drug-resistant myeloma cells and putative myeloma stem cell replenishment of malignant plasma cells. Blood Cancer J. 2016;6(8):e460.
39. Ji W, Arnst C, Tipton AR, et al. OTSSP167 Abrogates mitotic checkpoint through inhibiting multiple mitotic kinases. PloS One. 2016;11(4):e0153518.
40. Liu X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for cancer treatment. Transl Oncol. 2015;8(3):185-195.
41. Bonte D, Lindvall C, Liu H, Dykema K, Furge K, Weinreich M. Cdc7-Dbf4 kinase overexpression in multiple cancers and tumor cell lines is correlated with p53 inac- tivation. Neoplasia. 2008;10(9):920-931.
42. Xie Y, Wang A, Lin J, et al. Mps1/TTK: a novel target and biomarker for cancer. J Drug Target. 2017;25(2):112-118.
43. Ohashi T, Komatsu S, Ichikawa D, et al. Overexpression of PBK/TOPK relates to tumour malignant potential and poor out- come of gastric carcinoma. Br J Cancer. 2017;116(2):218-226.
44. Bullock N, Oltean S. The many faces of SRPK1. J Pathol. 2017;241(4):437-440.
45. MaZ,YaoG,ZhouB,FanY,GaoS,Feng
X. The Chk1 inhibitor AZD7762 sensitises p53 mutant breast cancer cells to radiation in vitro and in vivo. Mol Med Rep. 2012;6(4):897-903.
46. Meuth M. Chk1 suppressed cell death. Cell
Div. 2010;5:21.
47. Blasina A, Hallin J, Chen E, et al. Breaching
the DNA damage checkpoint via PF- 00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther. 2008;7(8):2394-2404.
48. Beke L, Kig C, Linders JTM, et al. MELK- T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tol- erance in proliferating cancer cells. Biosci Rep. 2015;35(6).
49. Ayllón V, O’connor R. PBK/TOPK pro- motes tumour cell proliferation through p38 MAPK activity and regulation of the DNA damage response. Oncogene. 2007; 26(24):3451-3461.
50. Sawa M, Masai H. Drug design with Cdc7 kinase: a potential novel cancer therapy tar- get. Drug Des Devel Ther. 2009;2:255-264.
51. Zhou W, Yang Y, Xia J, et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other can- cers. Cancer Cell. 2013;23(1):48-62.
52. YangY,GuC,LuoC,LiF,WangM.BUB1B promotes multiple myeloma cell prolifera- tion through CDC20/CCNB axis. Med Oncol. 2015;32(3):81.
haematologica | 2020; 105(3)
795


































































































   279   280   281   282   283