Page 269 - Haematologica March 2020
P. 269

The hydroxymethylome of multiple myeloma
Blood. 2004;103(9):3511-3515.
33. Cai L, Langer EM, Gill JG, et al. Dual actions
of Meis1 inhibit erythroid progenitor devel- opment and sustain general hematopoietic cell proliferation. Blood. 2012;120(2):335- 346.
34. Lovén J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153(2):320- 334.
35. Peterson TR, Laplante M, Thoreen CC, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873-886.
36. Zhou H, Ge Y, Sun L, et al. Growth arrest specific 2 is up-regulated in chronic myeloid leukemia cells and required for their growth. PLoS One. 2014;9(1):e86195.
37. Maupetit-Methouas S, Court F, Bourgne C, et al. DNA methylation profiling reveals a pathological signature that contributes to transcriptional defects of CD34+ CD15- cells in early chronic-phase chronic myeloid leukemia. Mol Oncol. 2018;12(6):814-829.
38. Wang Y, Zhang Y. Regulation of TET protein stability by calpains. Cell Rep. 2014;6(2):278-284.
39. Kutzner A, Pramanik S, Kim PS, Heese K. All-or-(N)One - an epistemological charac- terization of the human tumorigenic neu-
ronal paralogous FAM72 gene loci.
Genomics. 2015;106(5):278-285.
40. Gu C, Yang Y, Sompallae R, et al. FOXM1 is a therapeutic target for high-risk multiple
myeloma. Leukemia. 2016;30(4):873-882. 41. Giotti B, Chen S-H, Barnett MW, et al. Assembly of a parts list of the human mitot- ic cell cycle machinery. J Mol Cell Biol. 2018
Nov 17. [Epub ahead of print]
42. Gormally MV, Dexheimer TS, Marsico G, et
al. Suppression of the FOXM1 transcription- al programme via novel small molecule inhi- bition. Nat Commun. 2014;5:5165.
43. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using cBioPortal. Sci Signal. 2013;6(269):pl1.
44. Sanders DA, Ross-Ines CS, Beraldi D, Carroll JS, Balasubramanian S. Genome- wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells. Genome Biol. 2013;14(1):R6.
45. Bruyer A, Maes K, Herviou L, et al. DNMTi/HDACi combined epigenetic tar- geted treatment induces reprogramming of myeloma cells in the direction of normal plasma cells. Br J Cancer. 2018;118(8):1062- 1073.
46. Pawlyn C, Morgan GJ. Evolutionary biology of high-risk multiple myeloma. Nat Rev
Cancer. 2017;17(9):543–556.
47. Sawyer JR, Tian E, Heuck CJ, et al. Evidence
of an epigenetic origin for high-risk 1q21 copy number alterations in multiple myelo- ma. Blood. 2015;125(24):3756–3759.
48. Guo C, Zhang X, Fink SP, et al. Ugene, a newly identified protein that is commonly overexpressed in cancer and binds uracil DNA glycosylase. Cancer Res. 2008;68(15):6118-6126.
49. Wang LT, Lin CS, Chai CY, Liu KY, Chen JY, Hsu SH. Functional interaction of Ugene and EBV infection mediates tumorigenic effects. Oncogene. 2011;30(26):2921-2932.
50. Wang X, Sun Q. TP53 mutations, expression and interaction networks in human cancers. Oncotarget. 2017;8(1):624-643.
51. Tshemiak A, Vazquez F, Montgomery PG, et al. Defining a cancer dependency map. Cell. 2017;170(3):564-576.
52. Giotopoulos G, van der Weyden L, Osaki H, et al. A novel mouse model identifies coop- erating mutations and therapeutic targets critical for chronic myeloid leukemia pro- gression. J Exp Med. 2015;212(10):1551- 1569.
53. Guo Y, Updegraff BL, Park S, et al. Comprehensive Ex vivo transposon mutage- nesis identifies genes that promote growth factor independence and leukemogenesis. Cancer Res. 2016;76(4):773-786.
haematologica | 2020; 105(3)
783


































































































   267   268   269   270   271