Page 239 - Haematologica March 2020
P. 239

CXCR4-targeted nanocarrier to DLBCL cells
22. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: princi- ples, pitfalls and (pre-) clinical progress. J Control Release. 2012;161(2):175–187.
23. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205.
24. Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.
25. Céspedes MV, Unzueta U, Álamo P, et al. Cancer-specific uptake of a liganded pro- tein nanocarrier targeting aggressive CXCR4+ colorectal cancer models. Nanomedicine. 2016;12(7):1987–1996.
26. Heneweer C, Holland JP, Divilov V, Carlin S, Lewis JS. Magnitude of enhanced perme- ability and retention effect in tumors with different phenotypes: 89Zr-albumin as a model system. J Nucl Med. 2011;52(4):625– 633.
27. Unzueta U, Céspedes MV, Vázquez E, Ferrer-Miralles N, Mangues R, Villaverde A. Towards protein-based viral mimetics for cancer therapies. Trends Biotechnol. 2015;33(5):253–258.
28. Zhou S, Wu D, Yin X, et al. Intracellular pH-responsive and rituximab-conjugated mesoporous silica nanoparticles for target- ed drug delivery to lymphoma B cells. J Exp Clin Cancer Res. 2017;36(1):24.
29. Nevala WK, Butterfield JT, Sutor SL, Knauer DJ, Markovic SN. Antibody-target-
ed paclitaxel loaded nanoparticles for the treatment of CD20+ B-cell lymphoma. Sci Rep. 2017;7:45682.
30. Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a bio- molecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8(2):137–143.
31. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510.
32. Zhang RX, Li J, Zhang T, et al. Importance of integrating nanotechnology with phar- macology and physiology for innovative drug delivery and therapy – an illustration with firsthand examples. Acta Pharmacol Sin. 2018;39(5):825–844.
33. Gerber H-P, Senter PD, Grewal IS. Antibody drug-conjugates targeting the tumor vasculature: Current and future developments. MAbs. 2009;1(3):247–253.
34. Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occup Med. 2006;56(5):307– 311.
35. Ghitescu L, Robert M. Diversity in unity: the biochemical composition of the endothelial cell surface varies between the vascular beds. Microsc Res Tech. 2002;57(5):381–389.
36. Ribatti D, Vacca A, Nico B, Fanelli M, Roncali L, Dammacco F. Angiogenesis spec-
trum in the stroma of B-cell non-Hodgkin’s lymphomas. An immunohistochemical and ultrastructural study. Eur J Haematol. 1996;56(1–2):45–53.
37. Kobayashi H, Watanabe R, Choyke PL. Improving conventional Enhanced perme- ability and Retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4(1):81–89.
38. Céspedes MV, Unzueta U, Aviñó A, et al. Selective depletion of metastatic stem cells as therapy for human colorectal cancer. EMBO Mol Med. 2018;10(10).
39. Díaz R, Pallarès V, Cano-Garrido O, et al. Selective CXCR4+ Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin. Small. 2018;14(26):e1800665.
40. Recasens-Zorzo C, Cardesa-Salzmann T, Petazzi P, et al. Pharmacological modula- tion of CXCR4 cooperates with BET bro- modomain inhibition in diffuse large B-cell lymphoma. Haematologica 2019; 104(4):778–788.
41. Aghanejad A. Synthesis and Evaluation of [67Ga]-AMD3100: A Novel Imaging Agent for Targeting the Chemokine Receptor CXCR4. Sci Pharm 2014;82(1):29–42.
42. Zhang X-X, Sun Z, Guo J, et al. Comparison of 18F-labeled CXCR4 antago- nist peptides for PET imaging of CXCR4 expression. Mol Imaging Biol 2013; 15(6):758–767.
haematologica | 2020; 105(3)
753


































































































   237   238   239   240   241