Page 108 - Haematologica March 2020
P. 108

A. Caulier et al.
12. Glogowska E, Schneider ER, Maksimova Y,
et al. Novel mechanisms of PIEZO1 dys- function in hereditary xerocytosis. Blood. 2017;130(16):1845-1856.
13. Rapetti-Mauss R, Picard V, Guitton C, et al. Red blood cell Gardos channel (KCNN4): the essential determinant of erythrocyte dehydration in hereditary xerocytosis. Haematologica. 2017;102(10):e415-e418.
14. Li J, Hale J, Bhagia P, et al. Isolation and tran- scriptome analyses of human erythroid pro- genitors: BFU-E and CFU-E. Blood. 2014;124 (24):3636-3645.
15. Gudipaty SA, Lindblom J, Loftus PD, et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature. 2017;543(7643):118-121.
16. Miyamoto T, Mochizuki T, Nakagomi H, et al. Functional role for Piezo1 in stretch- evoked Ca2+ influx and ATP release in urothelial cell cultures. J Biol Chem. 2014; 289(23):16565-16575.
17. Li J, Hou B, Tumova S, et al. Piezo1 integra- tion of vascular architecture with physiolog- ical force. Nature. 2014;515(7526):279-282.
18. Del Mármol JI, Touhara KK, Croft G, MacKinnon R. Piezo1 forms a slowly-inacti- vating mechanosensory channel in mouse embryonic stem cells. Elife. 2018;7.
19. Park J, Jang W, Han E, et al. Hereditary dehy- drated stomatocytosis with splicing site mutation of PIEZO1 mimicking myelodys- plastic syndrome diagnosed by targeted next-generation sequencing. Pediatr Blood Cancer. 2018;65(7):e27053.
20. Garçon L, Lacout C, Svinartchouk F, et al. Gfi-1B plays a critical role in terminal differ- entiation of normal and transformed ery- throid progenitor cells. Blood. 2005;105(4): 1448-1455.
21. Walrafen P, Verdier F, Kadri Z, Chrétien S, Lacombe C, Mayeux P. Both proteasomes and lysosomes degrade the activated ery- thropoietin receptor. Blood. 2005;105(2): 600-608.
22. Picard V, Guitton C, Thuret I, et al. Clinical and biological features in PIEZO1-hereditary xerocytosis and Gardos-channelopathy: a retrospective series of 126 patients. Haematologica. 2019;104(8):1554-1564.
23. An X, Schulz VP, Li J, et al. Global transcrip- tome analyses of human and murine termi- nal erythroid differentiation. Blood.
2014;123(22):3466-3477.
24. Gautier E-F, Ducamp S, Leduc M, et al.
Comprehensive proteomic analysis of human erythropoiesis. Cell Rep. 2016;16(5): 1470-1484.
25. Syeda R, Xu J, Dubin AE, et al. Chemical activation of the mechanotransduction channel Piezo1. Elife. 2015;4.
26. Hu J, Liu J, Xue F, et al. Isolation and function- al characterization of human erythroblasts at distinct stages: implications for understand- ing of normal and disordered erythropoiesis in vivo. Blood. 2013;121(16): 3246-3253.
27. Hogan PG. Transcriptional regulation by cal- cium, calcineurin, and NFAT. Genes Dev. 2003;17(18):2205-2232.
28. Gallagher PG. Disorders of erythrocyte hydration. Blood. 2017;130(25):2699-2708.
29. Caulier A, Rapetti-Mauss R, Guizouarn H, Picard V, Garçon L, Badens C. Primary red cell hydration disorders: pathogenesis and diagnosis. Int J Lab Hematol. 2018;40 (Suppl 1):68-73.
30. Ma S, Cahalan S, LaMonte G, et al. Common PIEZO1 allele in African popula- tions causes RBC dehydration and attenu- ates Plasmodium infection. Cell. 2018;173 (2):443-455.e12.
31. Rooks H, Brewin J, Gardner K, et al. A gain of function variant in PIEZO1 (E756del) and sickle cell disease. Haematologica. 2019;104 (3):e91-e93.
32. Paessler M, Hartung H. Dehydrated heredi- tary stomatocytosis masquerading as MDS. Blood. 2015;125(11):1841.
33. Moriguchi T, Yamamoto M. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation. Int J Hematol. 2014;100(5): 417-424.
34. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regula- tion of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118(24):6258- 6268.
35. Cheung JY, Zhang XQ, Bokvist K, Tillotson DL, Miller BA. Modulation of calcium chan- nels in human erythroblasts by erythropoi- etin. Blood. 1997;89(1):92-100.
36. Chu X, Cheung JY, Barber DL, et al. Erythropoietin modulates calcium influx through TRPC2. J Biol Chem. 2002;277(37):
34375-34382.
37. Wölwer CB, Pase LB, Russell SM, Humbert
PO. Calcium signaling is required for ery- throid enucleation. PLoS ONE. 2016;11(1): e0146201.
38. Dela Paz NG, Frangos JA. Yoda1-induced phosphorylation of Akt and ERK1/2 does not require Piezo1 activation. Biochem Biophys Res Commun. 2018;497(1):220-225.
39. Sui X, Krantz SB, You M, Zhao Z. Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythro- poiesis. Blood. 1998;92(4):1142-1149.
40. Zhang J, Socolovsky M, Gross AW, Lodish HF. Role of Ras signaling in erythroid differ- entiation of mouse fetal liver cells: function- al analysis by a flow cytometry-based novel culture system. Blood. 2003;102(12):3938- 3946.
41. Zhang J, Lodish HF. Constitutive activation of the MEK/ERK pathway mediates all effects of oncogenic H-ras expression in pri- mary erythroid progenitors. Blood. 2004;104(6):1679-1687.
42. Kumkhaek C, Aerbajinai W, Liu W, et al. MASL1 induces erythroid differentiation in human erythropoietin-dependent CD34+ cells through the Raf/MEK/ERK pathway. Blood. 2013;121(16):3216-3227.
43. Arcasoy MO, Jiang X. Co-operative sig- nalling mechanisms required for erythroid precursor expansion in response to erythro- poietin and stem cell factor. Br J Haematol. 2005;130(1):121-129.
44. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activa- tion. Cell. 1995;80(2):179-185.
45. Giampaolo S, Wójcik G, Klein-Hessling S, Serfling E, Patra AK. NFAT-mediated defects in erythropoiesis cause anemia in Il2-/- mice. Oncotarget. 2018;9(11):9632-9644.
46. Kiger L, Guitton C, Ghazal K, et al. Physiopathology of hereditary xerocytosis: Piezo gain of function mutations impact hemoglobin oxygen. Haematologica. 2017; 102(s2):446.
47. Rotordam GM, Fermo E, Becker N, et al. A novel gain-of-function mutation of Piezo1 is functionally affirmed in red blood cells by high-throughput patch clamp. Haematologica. 2019;104(5):e179-e183.
622
haematologica | 2020; 105(3)


































































































   106   107   108   109   110