Page 90 - 2020_02-Haematologica-web
P. 90

A. Brown et al.
References
1. De Haan G, Nijhof W, Van Zant G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood. 1997; 89(5):1543-1550.
2. Lopes M, Cotta-Ramusino C, Pellicioli A, et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature. 2001;412(6846):557-561.
3. De Haan G, Bystrykh LV, Weersing E, et al. A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover. Blood. 2002;100(6):2056-2062.
4. Geiger H, Rennebeck G, Van Zant G. Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc Natl Acad Sci USA. 2005; 102(14):5102-5107.
5. Geiger H, True JM, De haan G, Van Zant G. Age- and stage-specific regulation patterns in the hematopoietic stem cell hierarchy. Blood. 2001;98(10):2966-2972.
6. Manly KF, Cudmore RH, Meer JM. Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome. 2001; 12(12):930-932.
7. Van Zant G, Holland BP, Eldridge PW, Chen JJ. Genotype-restricted growth and aging patterns in hematopoietic stem cell popula- tions of allophenic mice. J Exp Med. 1990; 171(5):1547-1565.
8. Wakeland E, Morel L, Achey K, Yui M, Longmate J. Speed congenics: a classic tech- nique in the fast lane (relatively speaking). Immunol Today. 1997;18(10):472-477.
9. De Haan G, Van Zant G. Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood. 1999;93(10):3294- 3301.
10. Han Y, Eipel M, Franzen J, et al. Epigenetic age-predictor for mice based on three CpG sites. Elife. 2018;7.
11. Young CW, Schochetman G, Karnofsky DA. Hydroxyurea-induced inhibition of
deoxyribonucleotide synthesis: studies in intact cells. Cancer Res. 1967;27(3):526- 534.
12. KoƧ A, Wheeler LJ, Mathews CK, Merrill GF. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem. 2004;279(1):223-230.
13. Funabiki H, Kumada K, Yanagida M. Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J. 1996;15(23):6617- 6628.
14. Funabiki H, Yamano H, Kumada K, Nagao K, Hunt T, Yanagida M. Cut2 proteolysis required for sister-chromatid seperation in fission yeast. Nature. 1996;381(6581):438- 441.
15. Hood HM, Metten P, Crabbe JC, Buck KJ. Fine mapping of a sedative-hypnotic drug withdrawal locus on mouse chromosome 11. Genes Brain Behav. 2006;5(1):1-10.
16. Schollaert KL, Poisson JM, Searle JS, Schwanekamp JA, Tomlinson CR, Sanchez Y. A role for Saccharomyces cerevisiae Chk1p in the response to replication blocks. Mol Biol Cell. 2004;15(9):4051- 4063.
17. Bottomly D, Walter NA, Hunter JE, et al. Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA- Seq and microarrays. PLoS One. 2011; 6(3):e17820.
18. Geisert EE, Lu L, Freeman-anderson NE, et al. Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Mol Vis. 2009;15:1730-1763.
19. Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE. Genetic networks in the mouse retina: growth associated pro- tein 43 and phosphatase tensin homolog network. Mol Vis. 2011;17:1355-1372.
20. Keeley PW, Zhou C, Lu L, Williams RW, Melmed S, Reese BE. Pituitary tumor-trans- forming gene 1 regulates the patterning of retinal mosaics. Proc Natl Acad Sci USA. 2014;111(25):9295-9300.
21. Vadnais C, Davoudi S, Afshin M, et al. CUX1 transcription factor is required for
optimal ATM/ATR-mediated responses to DNA damage. Nucleic Acids Res. 2012; 40(10):4483-4495.
22. Lang DH, Gerhard GS, Griffith JW, et al. Quantitative trait loci (QTL) analysis of longevity in C57BL/6J by DBA/2J (BXD) recombinant inbred mice. Aging Clin Exp Res. 2010;22(1):8-19.
23. Henckaerts E, Langer JC, Snoeck HW. Quantitative genetic variation in the hematopoietic stem cell and progenitor cell compartment and in lifespan are closely linked at multiple loci in BXD recombinant inbred mice. Blood. 2004;104(2):374-379.
24. Hsu YH, Liao LJ, Yu CH, et al. Overexpression of the pituitary tumor transforming gene induces p53-dependent senescence through activating DNA dam- age response pathway in normal human fibroblasts. J Biol Chem. 2010; 285(29):22630-22638.
25. Moehrle BM, Nattamai K, Brown A, et al. Stem Cell-Specific Mechanisms Ensure Genomic Fidelity within HSCs and upon Aging of HSCs. Cell Rep. 2015;13(11):2412- 2424.
26. Brown A, Pospiech J, Eiwen K, et al. The Spindle Assembly Checkpoint Is Required for Hematopoietic Progenitor Cell Engraftment. Stem Cell Reports. 2017; 9(5):1359-1368.
27. Brown A, Geiger H. Chromosome integrity checkpoints in stem and progenitor cells: transitions upon differentiation, pathogen- esis, and aging. Cell Mol Life Sci. 2018;75(20):3771-3779.
28. Luo S, Tong L. Structural biology of the separase-securin complex with crucial roles in chromosome segregation. Curr Opin Struct Biol. 2018;49:114-122.
29. Sapochnik M, Nieto LE, Fuertes M, Arzt E. Molecular Mechanisms Underlying Pituitary Pathogenesis. Biochem Genet. 2016;54(2):107-119.
30. Sun D, Luo M, Jeong M, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that rein- force self-renewal. Cell Stem Cell. 2014; 14(5):673-688.
324
haematologica | 2020; 105(2)


































































































   88   89   90   91   92