Page 213 - 2020_02-Haematologica-web
P. 213

High STAT5A activity promotes CD8+ T-cell neoplasia
(CD44highCD62Lhigh) phenotype by an archaeosome adjuvant independent of TLR2. J Immunol. 2007;178(4):2396-2406.
43. Grange M, Buferne M, Verdeil G, Leserman L, Schmitt-Verhulst A, Auphan-Anezin N. Activated STAT5 promotes long-lived cyto- toxic CD8+ T cells that induce regression of autochthonous melanoma. Cancer Res. 2012;72(1):76-87.
44. Luckey CJ, Bhattacharya D, Goldrath AW, Weissman IL, Benoist C, Mathis D. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci U S A. 2006;103(9):3304-3309.
45. Kollmann S, Grundschober E, Maurer B, et al. Twins with different personalities: STAT5B – but not STAT5A – has a key role in BCR/ABL-induced leukemia. Leukemia. 2019 Jan 24. [Epub ahead of print]
46. Villarino A, Laurence A, Robinson GW, et al. Signal transducer and activator of transcrip- tion 5 (STAT5) paralog dose governs T cell effector and regulatory functions. eLife. 2016;5.
47. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrich- ment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90-W97.
48. Fantin VR, Loboda A, Paweletz CP, et al. Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma. Cancer Res. 2008;68(10): 3785- 3794.
49. Kopp KL, Ralfkiaer U, Gjerdrum LMR, et al. STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle. 2013;12(12):1939-1947.
50. Sibbesen NA, Kopp KL, Litvinov IV, et al. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-cell lymphoma. Oncotarget. 2015;6(24):20555-20569.
51. Zhang Q, Wang HY, Wei F, et al. Cutaneous T cell lymphoma expresses immunosup- pressive CD80 (B7-1) cell surface protein in a STAT5-dependent manner. J Immunol. 2014;192(6):2913-2919.
52. Orlova A, Wingelhofer B, Neubauer HA, et al. Emerging therapeutic targets in myelo- proliferative neoplasms and peripheral T-cell leukemia and lymphomas. Expert Opin Ther Targets. 2018;22(1):45-57.
53. Wingelhofer B, Maurer B, Heyes EC, et al. Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia. 2018;32(5): 1135-1146.
54. Ng SY, Yoshida N, Christie AL, et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun. 2018;9(1):2024.
55. Reddy NM, Evens AM. Chemotherapeutic advancements in peripheral T-cell lym- phoma. Semin Hematol. 2014;51(1):17-24.
56. Kelly JA, Spolski R, Kovanen PE, et al. Stat5 Synergizes with T cell receptor/antigen stimulation in the development of lym- phoblastic lymphoma. J Exp Med. 2003;198(1):79-89.
57. Chen B, Yi B, Mao R, et al. Enhanced T cell lymphoma in NOD.Stat5b transgenic mice is caused by hyperactivation of Stat5b in CD8(+) thymocytes. PLoS One. 2013;8(2): e56600.
58. Burchill MA, Goetz CA, Prlic M, et al. Distinct effects of STAT5 activation on CD4+ and CD8+ T cell homeostasis: devel- opment of CD4+CD25+ regulatory T cells versus CD8+ memory T cells. J Immunol. 2003;171(11):5853-5864.
59. Joliot V, Cormier F, Medyouf H, Alcalde H, Ghysdael J. Constitutive STAT5 activation specifically cooperates with the loss of p53 function in B-cell lymphomagenesis. Oncogene. 2006;25(33):4573-4584.
60. Lin W-c, Schmidt JW, Creamer BA, Triplett AA, Wagner K-U. Gain-of-function of Stat5 leads to excessive granulopoiesis and lethal extravasation of granulocytes to the lung. PLoS One. 2013;8(4):e60902.
61. Wingelhofer B, Neubauer HA, Valent P, et al. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodel- ing in hematopoietic cancer. Leukemia. 2018;32(8):1713-1726.
62. Piccaluga PP, Rossi M, Agostinelli C, et al. Platelet-derived growth factor alpha medi-
ates the proliferation of peripheral T-cell lymphoma cells via an autocrine regulatory pathway. Leukemia. 2014;28(8):1687-1697.
63. Lauenborg B, Christensen L, Ralfkiaer U, et al. Malignant T cells express lymphotoxin α and drive endothelial activation in cuta- neous T cell lymphoma. Oncotarget. 2015;6(17):15235-15249.
64. Litvinov IV, Netchiporouk E, Cordeiro B, et al. The use of transcriptional profiling to improve personalized diagnosis and man- agement of cutaneous T-cell lymphoma (CTCL). Clin Cancer Res. 2015;21(12):2820- 2829.
65. Bergmann AK, Schneppenheim S, Seifert M, et al. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer. 2014;53(4):309-316.
66. Beachy SH, Onozawa M, Chung YJ, et al. Enforced expression of Lin28b leads to impaired T-cell development, release of inflammatory cytokines, and peripheral T- cell lymphoma. Blood. 2012;120(5):1048- 1059.
67. Muto H, Sakata-Yanagimoto M, Nagae G, et al. Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice. Blood Cancer J. 2014;4:e264.
68. Pechloff K, Holch J, Ferch U, et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med. 2010;207(5): 1031-1044.
69. Tezuka K, Xun R, Tei M, et al. An animal model of adult T-cell leukemia: humanized mice with HTLV-1–specific immunity. Blood. 2014;123(3):346-355.
70. Andersson EI, Pützer S, Yadav B, et al. Discovery of novel drug sensitivities in T- PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia. 2017;32(3):774-787.
71. Zhang M, Mathews Griner LA, Ju W, et al. Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2- dependent adult T-cell leukemia. Proc Natl Acad Sci U S A. 2015;112(40):12480-12485.
haematologica | 2020; 105(2)
447


































































































   211   212   213   214   215