Page 152 - 2020_02-Haematologica-web
P. 152

V. Caraffini et al.
References
1. Fatrai S, Van Gosliga D, Han L, Daenen SMGJ, Vellenga E, Schuringa JJ. KRASG12V enhances proliferation and initiates myelomonocytic differentiation in human stem/progenitor cells via intrinsic and extrinsic pathways. J Biol Chem. 2011;286(8):6061-6070.
2. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11-22.
3. Geest CR, Coffer PJ. MAPK signaling path- ways in the regulation of hematopoiesis. J Leukoc Biol. 2009;86237-250.
4. Zebisch A, Czernilofsky A, Keri G, Smigelskaite J, Sill H, Troppmair J. Signaling Through RAS-RAF-MEK-ERK: from Basics to Bedside. Curr Med Chem. 2007;14(5):601-623.
5. Van Meter MEM, Díaz-Flores E, Archard JA, et al. K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood. 2007;109(9):3945-3952.
6. Braun BS, Tuveson DA, Kong N, et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci U S A. 2004;101(2):597-602.
7. Chan IT, Kutok JL, Williams IR, et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest. 2004;113(4):528-538.
8. Li Q, Haigis KM, McDaniel A, et al. Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood. 2011; 117(6):2022-2032.
9. Wang J, Kong G, Liu Y, et al. Nras(G12D/+) promotes leukemogenesis by aberrantly regulating hematopoietic stem cell func- tions. Blood. 2013;121(26):5203-5207.
10. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-2221.
11. Kashofer K, Gornicec M, Lind K, et al. Detection of prognostically relevant muta- tions and translocations in myeloid sarco- ma by next generation sequencing. Leuk Lymphoma. 2018;59(2):501-504.
12. Zebisch A, Wölfler A, Fried I, et al. Frequent loss of RAF kinase inhibitor protein expres- sion in acute myeloid leukemia. Leukemia. 2012;26(8):1842-1849.
13. Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6(2):e393.
14. Geissler K, Jäger E, Barna A, et al. Chronic myelomonocytic leukemia patients with RAS pathway mutations show high in vitro myeloid colony formation in the absence of exogenous growth factors. Leukemia. 2016;30(11):2280-2281.
15. Kunimoto H, Meydan C, Nazir A, et al. Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. Cancer Cell. 2018;33(1):44-59.
16. Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase sig-
nalling by RKIP. Nature. 1999;
401(6749):173-177.
17. Al-Mulla F, Bitar MS, Taqi Z, Yeung KC.
RKIP: Much more than Raf Kinase inhibito- ry protein. J Cell Physiol. 2013;228(8):1688- 1702.
18. Al-Mulla F, Hagan S, Behbehani AI, et al. Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J Clin Oncol. 2006;24(36):5672- 5679.
19. Escara-Wilke J, Keller JM, Ignatoski KMW, et al. Raf kinase inhibitor protein (RKIP) deficiency decreases latency of tumorigen- esis and increases metastasis in a murine genetic model of prostate cancer. Prostate. 2015;75(3):292-302.
20. Zebisch A, Haller M, Hiden K, et al. Loss of RAF kinase inhibitor protein is a somatic event in the pathogenesis of therapy-relat- ed acute myeloid leukemias with C-RAF germline mutations. Leukemia. 2009; 23(6):1049-1053.
21. Hatzl S, Geiger O, Kuepper MK, et al. Increased expression of miR-23a mediates a loss of expression in the RAF kinase inhibitor protein RKIP. Cancer Res. 2016; 76(12):3644-3654.
22. Caraffini V, Perfler B, Berg JL, et al. Loss of RKIP is a frequent event in myeloid sarco- ma and promotes leukemic tissue infiltra- tion. Blood. 2018;131(7):826-830.
23. Zebisch A, Staber PB, Delavar A, et al. Two Transforming C-RAF Germ-Line Mutations Identified in Patients with Therapy-Related Acute Myeloid Leukemia. Cancer Res. 2006;66(7):3401-3408.
24. Taschner S, Koesters C, Platzer B, et al. Down-regulation of RXR expression is essential for neutrophil development from granulocyte-monocyte progenitor. Blood. 2007;109(3):971-979.
25. Wang J, Liu Y, Li Z, et al. Endogenous onco- genic NRAS mutation promotes aberrant GM-CSF signaling in granulocytic/mono- cytic precursors in a murine model of chronic myelomonocytic leukemia. Blood. 2010;116(26):5991-6002.
26. Haigis KM, Kendall KR, Wang Y, et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 2008;40(5):600-608.
27. Lal R, Lind K, Heitzer E, et al. Somatic TP53 mutations characterize preleukemic stem cells in acute myeloid leukemia. Blood. 2017;129(18):2587-2591.
28. Gaksch L, Kashofer K, Heitzer E, et al. Residual disease detection using targeted parallel sequencing predicts relapse in cyto- genetically normal acute myeloid leukemia. Am J Hematol. 2018;93(1):23-30.
29. Caux C, Massacrier C, Dubois B, et al. Respective involvement of TGF- and IL-4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+progenitors. J Leukoc Biol. 1999; 66(5):781-791.
30. Zebisch A, Lal R, Müller M, et al. Acute myeloid leukemia with TP53 germ line mutations. Blood. 2016;128(18):2270–2272.
31. Konuma T, Nakamura S, Miyagi S, et al. Forced expression of the histone demethy- lase Fbxl10 maintains self-renewing hematopoietic stem cells. Exp Hematol.
2011;39(6):697-709.
32. Sung L-Y, Gao S, Shen H, et al.
Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer. Nat Genet. 2006; 38(11):1323-1328.
33. Moran-Crusio K, Reavie L, Shih A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid trans- formation. Cancer Cell. 2011;20(1):11-24.
34. Wang Y, Krivtsov AV, Sinha AU, et al. The Wnt/ -catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML. Science. 2010;327(5973):1650-1653.
35. White SL, Belov L, Barber N, Hodgkin PD, Christopherson RI. Immunophenotypic changes induced on human HL60 leukaemia cells by 1 ,25-dihydroxyvitamin D3and 12-O-tetradecanoyl phorbol-13- acetate. Leuk Res. 2005;29(10):1141-1151.
36. Kim K, Seoh JY, Cho SJ. Phenotypic and Functional Analysis of HL-60 Cells Used in Opsonophagocytic-Killing Assay for Streptococcus pneumoniae. J Korean Med Sci. 2015;30(2):145-150.
37. Kogan SC, Ward JM, Anver MR, et al. Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood. 2002;100(1):238-245.
38. Yoshimi A, Balasis ME, Vedder A, et al. Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood. 2017;130(4):397-407.
39. Zhao Z, Chen CC, Rillahan CD, et al. Cooperative loss of RAS feedback regula- tion drives myeloid leukemogenesis. Nat Genet. 2015;47(5):539-543.
40. Abdel-Wahab O, Adli M, Lafave LM, et al. ASXL1 Mutations Promote Myeloid Transformation Through Loss of PRC2- Mediated Gene Repression. Cancer Cell. 2012;22(2):180-193.
41. Geiger O, Hatzl S, Kashofer K, et al. Deletion of SPRY4 is a frequent event in secondary acute myeloid leukemia. Ann Hematol. 2015;94(11):1923-1924.
42. Wang X, Studzinski GP. Activation of extra- cellular signal-regulated kinases (ERKs) defines the first phase of 1,25-dihydroxyvi- tamin d3-induced differentiation of HL60 cells. J Cell Biochem. 2001;80(4):471-482.
43. Wang X, Studzinski GP. Kinase Suppressor of RAS (KSR) Amplifies the Differentiation Signal Provided by Low Concentrations 1,25-Dihydroxyvitamin D3. J Cell Physiol. 2004;198(3):333-342.
44. Wang J, Zhao Y, Kauss MA, Spindel S, Lian H. Akt regulates vitamin D3-induced leukemia cell functional differentiation via Raf/MEK/ERK MAPK signaling. Eur J Cell. Biol 2009;88(2):103-115.
45. Wang X, Studzinski GP. Oncoprotein Cot1 represses kinase suppressors of Ras1/2 and 1,25-dihydroxyvitamin D3-induced differ- entiation of human acute myeloid leukemia cells. J Cell Physiol. 2011; 226(5):1232-1240.
46. Mason CC, Khorashad JS, Tantravahi SK, et al. Age-related mutations and chronic myelomonocytic leukemia. Leukemia. 2016;30(4):906-913.
47. Smith CC, Shah NP. The role of kinase inhibitors in the treatment of patients with acute myeloid leukemia. Am Soc Clin Oncol Educ Book. 2013;313-8.
386
haematologica | 2020; 105(2)


































































































   150   151   152   153   154