Page 55 - 2020_01-Haematologica-web
P. 55

Niche alterations promoting hematopoietic aging
(6960):836-841.
22. Zhao M, Tao F, Venkatraman A, et al. N-cad-
herin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells. Cell Rep. 2019;26 (3):652-669.
23. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoi- etic stem cell niche. Nature. 2003;425 (6960):841-846.
24. Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149- 161.
25. Yoshihara H, Arai F, Hosokawa K, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1(6):685-697.
26. Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439(7076):599-603.
27. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell nich- es. Immunity. 2006;25(6):977-988.
28. Kinashi T, Springer TA. Steel factor and c-kit regulate cell-matrix adhesion. Blood. 1994;83(4):1033-1038.
29. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231-235.
30. Greenbaum AM, Revollo LD, Woloszynek JR, Civitelli R, Link DC. N-cadherin in oste- olineage cells is not required for mainte- nance of hematopoietic stem cells. Blood. 2012;120(2):295-302.
31. Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125(17):2621-2629.
32. Bruns I, Lucas D, Pinho S, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secre- tion. Nat Med. 2014;20(11):1315-1320.
33. Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic qui- escence and promote post-injury regenera- tion of hematopoietic stem cells. Nat Med. 2014;20(11):1321-1326.
34. Nakamura-Ishizu A, Takubo K, Fujioka M, Suda T. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem Biophys Res Commun. 2014;454(2):353-357.
35. Pinho S, Marchand T, Yang E, et al. Lineage- biased hematopoietic stem cells are regulat- ed by distinct niches. Dev Cell. 2018;44(5): 634-641.
36. Florian MC, Dorr K, Niebel A, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012;10(5):520-530.
37. Xing Z, Ryan MA, Daria D, et al. Increased hematopoietic stem cell mobilization in aged mice. Blood. 2006;108(7):2190-2197.
38. Maryanovich M, Zahalka AH, Pierce H, et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med. 2018;24(6):782- 791.
39. Ho YH, Del Toro R, Rivera-Torres J, et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiologi- cal aging. Cell Stem Cell. 2019;25(3):407- 418.
40. Sacma M, Pospiech J, Bogeska R, et al.
Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nat Cell Biol. 2019;21(11):1309-1320.
41. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone mar- row-derived mesenchymal stem cells: con- sequences for cell therapies. Mech Ageing Dev. 2008;129(3):163-173.
42. Garcia-Prat L, Sousa-Victor P, Munoz- Canoves P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J. 2013;280(17):4051-4062.
43. Siegel G, Kluba T, Hermanutz-Klein U, et al. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 2013;11:146.
44. Wagner W, Bork S, Horn P, et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PloS One. 2009;4(6):e5846.
45. Ganguly P, El-Jawhari JJ, Burska AN, et al. The analysis of in vivo aging in human bone marrow mesenchymal stromal cells using colony-forming unit-fibroblast assay and the CD45(low)CD271(+) Phenotype. Stem Cells Int. 2019;2019: 5197983.
46. Visnjic D, Kalajzic Z, Rowe DW, et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004;103(9):3258-3264.
47. Zhu J, Garrett R, Jung Y, et al. Osteoblasts support B-lymphocyte commitment and dif- ferentiation from hematopoietic stem cells. Blood. 2007;109(9):3706-3712.
48. Wu JY, Purton LE, Rodda SJ, et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gs{alpha}-dependent signal- ing pathways. Proc Natl Acad Sci U S A. 2008;105(44):16976-16981.
49. Zehentmeier S, Pereira JP. Cell circuits and niches controlling B cell development. Immunol Rev. 2019;289(1):142-157.
50. Fistonich C, Zehentmeier S, Bednarski JJ, et al. Cell circuits between B cell progenitors and IL-7(+) mesenchymal progenitor cells control B cell development. J Exp Med. 2018;215(10):2586-2599.
51. Cordeiro Gomes A, Hara T, Lim VY, et al. Hematopoietic stem cell niches produce lin- eage-instructive signals to control multipo- tent progenitor differentiation. Immunity. 2016;45(6):1219-1231.
52. Balzano M, De Grandis M, Vu Manh TP, et al. Nidogen-1 contributes to the interaction network involved in pro-B cell retention in the peri-sinusoidal hematopoietic stem cell niche. Cell Rep. 2019;26(12):3257-3271.
53. Nakahara F, Borger DK, Wei Q, et al. Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nat Cell Biol. 2019;21(5):560-567.
54. Guidi N, Sacma M, Standker L, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36(7):840-853.
55. Nilsson SK, Johnston HM, Whitty GA, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood. 2005;106(4):1232-1239.
motif) ligand 5 (Ccl5). J Bone Miner Res.
2013;28(10):2070-2080.
59. Kim M, Kim C, Choi YS, et al. Age-related
alterations in mesenchymal stem cells relat- ed to shift in differentiation from osteogenic to adipogenic potential: implication to age- associated bone diseases and defects. Mech Ageing Dev. 2012;133(5):215-225.
60. Zhou BO, Yu H, Yue R, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19(8):891-903.
61. Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthe- sis. Front Endocrinol (Lausanne). 2019; 10:137.
62. Ambrosi TH, Scialdone A, Graja A, et al. Adipocyte accumulation in the bone mar- row during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6): 771-784.
63. Fazeli PK, Horowitz MC, MacDougald OA, et al. Marrow fat and bone--new perspec- tives. J Clin Endocrinol Metab. 2013;98 (3):935-945.
64. Schwartz AV. Marrow fat and bone: review of clinical findings. Front Endocrinol (Lausanne). 2015;6:40.
65. Zhang DY, Wang HJ, Tan YZ. Wnt/beta- catenin signaling induces the aging of mes- enchymal stem cells through the DNA dam- age response and the p53/p21 pathway. PloS One. 2011;6(6):e21397.
66. Zheng Y, He L, Wan Y, Song J. H3K9me- enhanced DNA hypermethylation of the p16INK4a gene: an epigenetic signature for spontaneous transformation of rat mes- enchymal stem cells. Stem Cells Dev. 2013;22(2):256-267.
67. Kornicka K, Marycz K, Tomaszewski KA, Maredziak M, Smieszek A. The effect of age on osteogenic and adipogenic differentiation potential of human adipose derived stromal stem cells (hASCs) and the impact of stress fctors in the course of the differentiation process. Oxid Med Cell Longev. 2015;2015: 309169.
68. Ju Z, Jiang H, Jaworski M, et al. Telomere dysfunction induces environmental alter- ations limiting hematopoietic stem cell func- tion and engraftment. Nat Med. 2007;13 (6):742-747.
69. Hennrich ML, Romanov N, Horn P, et al. Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nat Commun. 2018;9(1):4004.
70. Kusumbe AP, Ramasamy SK, Itkin T, et al. Age-dependent modulation of vascular nich- es for haematopoietic stem cells. Nature. 2016;532(7599):380-384.
71. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323-328.
72. Poulos MG, Ramalingam P, Gutkin MC, et al. Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J Clin Invest. 2017;127(11):4163-4178.
73. Tikhonova AN, Dolgalev I, Hu H, et al. The bone marrow microenvironment at single- cell resolution. Nature. 2019;569(7755):222-
56. Stier S, Ko Y, Forkert R, et al. Osteopontin is
a hematopoietic stem cell niche component
that negatively regulates stem cell pool size. 228.
J Exp Med. 2005;201(11):1781-1791.
57. Haylock DN, Nilsson SK. Osteopontin: a bridge between bone and blood. Br J
Haematol. 2006;134(5):467-474.
58. Wintges K, Beil FT, Albers J, et al. Impaired
bone formation and increased osteoclasto- genesis in mice lacking chemokine (C-C
74. Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H. Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front Immunol. 2016;7:502.
75. Arranz L, Sanchez-Aguilera A, Martin-Perez D, et al. Neuropathy of haematopoietic
haematologica | 2020; 105(1)
45


































































































   53   54   55   56   57