Page 170 - 2020_01-Haematologica-web
P. 170

C. Li et al. References
1. Powell RG, Weisleder D, Smith CR Jr. Antitumor alkaloids for Cephalataxus har- ringtonia: structure and activity. J Pharm Sci. 1972;61(8):1227-1230.
2. Nazha A, Kantarjian H, Cortes J, Quintas- Cardama A. Omacetaxine mepesuccinate (synribo) - newly launched in chronic myeloid leukemia. Expert Opin Pharmacother. 2013;14(14):1977-1986.
3. Cephalotaxine esters in the treatment of acute leukemia. A preliminary clinical assessment. Chin Med J (Engl). 1976; 2(4):263-272.
4. Jin J, Jiang DZ, Mai WY, et al. Homoharringtonine in combination with cytarabine and aclarubicin resulted in high complete remission rate after the first induction therapy in patients with de novo acute myeloid leukemia. Leukemia. 2006; 20(8):1361-1367.
5. Jin J, Wang JX, Chen FF, et al. Homoharringtonine-based induction regi- mens for patients with de-novo acute myeloid leukaemia: a multicentre, open- label, randomised, controlled phase 3 trial. Lancet Oncol. 2013;14(7):599-608.
6. Gurel G, Blaha G, Moore PB, Steitz TA. U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and brucean- tin bound to the ribosome. J Mol Biol. 2009;389(1):146-156.
7. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-447.
8. Patel JP, Gonen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079-1089.
9. Jiang X, Bugno J, Hu C, et al. Eradication of Acute Myeloid Leukemia with FLT3 Ligand-Targeted miR-150 Nanoparticles. Cancer Res. 2016;76(15):4470-4480.
10. Kim KT, Baird K, Davis S, et al. Constitutive Fms-like tyrosine kinase 3 activation results in specific changes in gene expression in myeloid leukaemic cells. Br J Haematol. 2007;138(5):603-615.
11. Leung AY, Man CH, Kwong YL. FLT3 inhi- bition: a moving and evolving target in acute myeloid leukaemia. Leukemia. 2013;27(2):260-268.
12. Konig H, Levis M. Targeting FLT3 to treat leukemia. Expert Opin Ther Targets. 2015;19(1):37-54.
13. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5- hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930-935.
14. Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y. LCX, leukemia- associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 2002; 62(14):4075-4080.
15. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia. 2003;17(3):637-641.
16. Moran-Crusio K, Reavie L, Shih A, et al. Tet2 loss leads to increased hematopoietic
stem cell self-renewal and myeloid trans-
formation. Cancer Cell. 2011;20(1):11-24. 17. Huang H, Jiang X, Li Z, et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci USA.
2013;110(29):11994-11999.
18. Jiang X, Hu C, Arnovitz S, et al. miR-22 has
a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat Commun. 2016;7:11452.
Huang J. Target identification using drug affinity responsive target stability (DARTS). Curr Protoc Chem Biol. 2011; 3(4):163-180.
36. Jafari R, Almqvist H, Axelsson H, et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc. 2014;9(9):2100-2122.
37. Xu Y, Wu F, Tan L, et al. Genome-wide reg- ulation of 5hmC, 5mC, and gene expres- sion by Tet1 hydroxylase in mouse embry- onic stem cells. Mol Cell. 2011;42(4):451-
19. Jiang X, Hu C, Ferchen K, et al. Targeted
inhibition of STAT/TET1 axis as a thera-
peutic strategy for acute myeloid leukemia. 464.
Nat Commun. 2017;8(1):2099.
20. Zhao Z, Chen L, Dawlaty MM, et al.
Combined Loss of Tet1 and Tet2 Promotes B Cell, but Not Myeloid Malignancies, in Mice. Cell Rep. 2015;13(8):1692-1704.
21. Wunderlich M, Mizukawa B, Chou FS, et al. AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. Blood. 2013;121(12):e90- 97.
22. Su R, Dong L, Li C, et al. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m(6)A/MYC/CEBPA Signaling. Cell. 2018;172(1-2):90-105 e123.
23. Jiang X, Huang H, Li Z, et al. Blockade of miR-150 maturation by MLL- fusion/MYC/LIN-28 is required for MLL- associated leukemia. Cancer Cell. 2012; 22(4):524-535.
24. Song CX, Szulwach KE, Fu Y, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydrox- ymethylcytosine. Nat Biotechnol. 2011; 29(1):68-72.
25. Zhang Y, Liu T, Meyer CA, et al. Model- based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
26. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
27. Wang S, Sun H, Ma J, et al. Target analysis by integration of transcriptome and ChIP- seq data with BETA. Nat Protoc. 2013; 8(12):2502-2515.
28. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowl- edge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550.
29. Yan M, Kanbe E, Peterson LF, et al. A previ- ously unidentified alternatively spliced iso- form of t(8;21) transcript promotes leuke- mogenesis. Nat Med. 2006;12(8):945-949.
30. Conway O'Brien E, Prideaux S, Chevassut T. The epigenetic landscape of acute myeloid leukemia. Adv Hematol. 2014; 2014:103175.
31. Eriksson A, Lennartsson A, Lehmann S. Epigenetic aberrations in acute myeloid leukemia: Early key events during leuke- mogenesis. Exp Hematol. 2015;43(8):609- 624.
32. Smale ST. Nuclear run-on assay. Cold Spring Harb Protoc. 2009; 2009(11):pdb.prot5329.
33. Liu S, Wu LC, Pang J, et al. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell. 2010;17(4):333-347.
34. Zhang Y, Chen HX, Zhou SY, et al. Sp1 and c-Myc modulate drug resistance of leukemia stem cells by regulating survivin expression through the ERK-MSK MAPK signaling pathway. Mol Cancer. 2015; 14:56.
35. Lomenick B, Jung G, Wohlschlegel JA,
38. Williams K, Christensen J, Pedersen MT, et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fideli- ty. Nature. 2011;473(7347):343-348.
39. Wu H, D'Alessio AC, Ito S, et al. Dual func- tions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature. 2011; 473(7347):389-393.
40. Wang GG, Pasillas MP, Kamps MP. Meis1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meis1 C-terminus. Blood. 2005;106(1):254-264.
41. Burillo-Sanz S, Morales-Camacho RM, Caballero-Velazquez T, et al. NUP98- HOXA9 bearing therapy-related myeloid neoplasm involves myeloid-committed cell and induces HOXA5, EVI1, FLT3, and MEIS1 expression. Int J Lab Hematol. 2016; 38(1):64-71.
42. Cimmino L, Dawlaty MM, Ndiaye-Lobry D, et al. TET1 is a tumor suppressor of hematopoietic malignancy. Nat Immunol. 2015;16(6):653-662.
43. NieZ,HuG,WeiG,etal.c-Mycisauni- versal amplifier of expressed genes in lym- phocytes and embryonic stem cells. Cell. 2012;151(1):68-79.
44. Bessa J, Tavares MJ, Santos J, et al. meis1 regulates cyclin D1 and c-myc expression, and controls the proliferation of the multi- potent cells in the early developing zebrafish eye. Development. 2008; 135(5):799-803.
45. Rollig C, Serve H, Huttmann A, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicen- tre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16(16):1691-1699.
46. Jin B, Wang C, Shen Y, Pan J. Anthelmintic niclosamide suppresses transcription of BCR-ABL fusion oncogene via disabling Sp1 and induces apoptosis in imatinib- resistant CML cells harboring T315I mutant. Cell Death Dis. 2018;9(2):68.
47. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-2221.
48. Brondfield S, Umesh S, Corella A, et al. Direct and indirect targeting of MYC to treat acute myeloid leukemia. Cancer Chemother Pharmacol. 2015;76(1):35-46.
49. Lam SS, Ho ES, He BL, et al. Homoharringtonine (omacetaxine mepe- succinate) as an adjunct for FLT3-ITD acute myeloid leukemia. Sci Transl Med. 2016; 8(359):359ra129.
50. Spiekermann K, Dirschinger RJ, Schwab R, et al. The protein tyrosine kinase inhibitor SU5614 inhibits FLT3 and induces growth arrest and apoptosis in AML-derived cell lines expressing a constitutively activated FLT3. Blood. 2003;101(4):1494-1504.
160
haematologica | 2020; 105(1)


































































































   168   169   170   171   172