Page 167 - 2019_12-Haematologica-web
P. 167

c-Abl/NIK limits the efficacy of Aurora inhibitors
References
1. Kuehl WM, Bergsagel PL. Molecular patho- genesis of multiple myeloma and its prema- lignant precursor. J Clin Invest. 2012; 122(10):3456-3463.
2. Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the non- canonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12(2):131-144.
3. AnnunziataCM,DavisRE,DemchenkoY,et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12(2):115-130.
4. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway acti- vation in multiple myeloma. Blood. 2010; 115(17):3541-3552.
5. Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R. TRAF2 differentially regu- lates the canonical and noncanonical path- ways of NF-kappaB activation in mature B cells. Immunity. 2004;21(5):629-642.
6. Vallabhapurapu S, Matsuzawa A, Zhang W, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquiti- nation cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol. 2008;9(12):1364-1370.
7. VarfolomeevE,BlankenshipJW,WaysonSM, et al. IAP antagonists induce autoubiquitina- tion of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell. 2007;131(4):669-681.
8. Thu YM, Richmond A. NF- B inducing kinase: a key regulator in the immune system and in cancer. Cytokine Growth Factor Rev. 2010;21(4):213-226
9. Rangaswami H, Bulbule A, Kundu GC. Nuclear factor-inducing kinase plays a crucial
role in osteopontin-induced MAPK/IkappaBalpha kinase-dependent nuclear factor kappaB-mediated promatrix metalloproteinase-9 activation. J Biol Chem. 2004;279(37):38921-38935.
10. NadimintyN,ChunJY,HuY,DuttS,LinX, Gao AC. LIGHT, a member of the TNF super- family, activates Stat3 mediated by NIK path- way. Biochem Biophys Res Commun. 2007;359(2):379-384.
11. Bharti AC, Shishodia S, Reuben JM, et al. Nuclear factor-kappaB and STAT3 are consti- tutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apopto- sis. Blood. 2004;103(8):3175-3184.
12. Lee H, Herrmann A, Deng JH, et al. Persistently activated Stat3 maintains consti- tutive NF-kappaB activity in tumors. Cancer Cell. 2009;15(4):283-293.
13. AllenJC,TalabF,ZuzelM,LinK,SlupskyJR. c-Abl regulates Mcl-1 gene expression in chronic lymphocytic leukemia cells. Blood. 2011;117(8):2414-2422.
14. Hilbert DM, Migone TS, Kopf M, Leonard WJ, Rudikoff S. Distinct tumorigenic poten- tial of abl and raf in B cell neoplasia: abl acti- vates the IL-6 signaling pathway. Immunity. 1996;5(1):81-89.
15. Pendergast AM. The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res. 2002;85:51-100.
16. Brasher BB, Van Etten RA. c-Abl has high intrinsic tyrosine kinase activity that is stimu- lated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. J Biol Chem. 2000;275(45):35631-35637.
17. SirventA,BenistantC,RocheS.Cytoplasmic signalling by the c-Abl tyrosine kinase in nor-
mal and cancer cells. Biol Cell. 2008;100(11):617-31.
18. PlattnerR,KadlecL,DeMaliKA,Kazlauskas
A, Pendergast AM. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 1999;13(18):2400-2411.
19. Yoshida K, Yamaguchi T, Natsume T, Kufe D, Miki Y. JNK phosphorylation of 14-3-3 pro- teins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat Cell Biol. 2005;7(3):278-285.
20. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer. 2013;13(8):559-571.
21. Cottini F, Hideshima T, Xu C, et al. Rescue of Hippo coactivator YAP1 triggers DNA dam- age-induced apoptosis in hematological can- cers. Nat Med. 2014;20(6):599-606.
22. Walters DK, Wu X, Tschumper RC, et al. Evidence for ongoing DNA damage in multi- ple myeloma cells as revealed by constitutive phosphorylation of H2AX. Leukemia. 2011;25(8):1344-1353.
23. Otto T, Sicinski P. Cell cycle proteins as prom- ising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93-115.
24. Briassouli P, Chan F, Savage K, Reis-Filho JS, Linardopoulos S. Aurora-A regulation of nuclear factor-kappaB signaling by phospho- rylation of IkappaBalpha. Cancer Res. 2007;67(4):1689-1695.
25. Mazzera L, Lombardi G, Abeltino M, et al. Aurora and IKK kinases cooperatively interact to protect multiple myeloma cells from Apo2L/TRAIL. Blood. 2013;122(15):2641- 2653.
26. Katsha A, Arras J, Soutto M, Belkhiri A, El- Rifai W. AURKA regulates JAK2-STAT3 activ- ity in human gastric and esophageal cancers. Mol Oncol. 2014;8(8):1419-1428.
27. Katayama H, Wang J, Treekitkarnmongkol W, et al. Aurora kinase-A inactivates DNA damage-induced apoptosis and spindle assembly checkpoint response functions of p73. Cancer Cell. 2012;21(2):196-211.
28. Hose D, Rème T, Meissner T, et al. Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood. 2009;113(18):4331-4340.
expression for survival. Blood. 2012;120(18):
3756-3763.
37. Wen Z, Zhong Z, Darnell JE Jr. Maximal acti-
vation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphory- lation. Cell. 1995;82(2):241-250.
38. Fang B. Genetic Interactions of STAT3 and Anticancer Drug Development. Cancers (Basel). 2014;6(1):494-525.
39. Crosio C, Fimia GM, Loury R, et al. Mitotic phosphorylation of histone H3: spatio-tem- poral regulation by mammalian Aurora kinas- es. Mol Cell Biol. 2002;22(3):874-885.
40. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21(1):11-19.
41. Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB. The serine/threonine kinase Pim-2 is a transcrip- tionally regulated apoptotic inhibitor. Genes Dev 2003;17(15):1841-1854.
42. Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 2006;13(11):1235-1242.
43. Asano J, Nakano A, Oda A, et al. The serine/threonine kinase Pim-2 is a novel anti- apoptotic mediator in myeloma cells. Leukemia. 2011;25(7):1182-1188.
44. Xia Z, Knaak C, Ma J, et al. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J Med Chem. 2009; 52(1):74-86.
45. Döppler H, Liou GY, Storz P. Downregulation of TRAF2 mediates NIK-induced pancreatic cancer cell proliferation and tumorigenicity. PLoS One. 2013; 8(1):e53676.
46. Linden M, Kirchhof N, Kvitrud M, Van Ness B. ABL-MYC retroviral infection elicits bone marrow plasma cell tumors in Bcl-X(L) trans- genic mice. Leuk Res. 2005;29(4):435-444.
47. Dispenzieri A, Gertz MA, Lacy MQ, et al. A phase II trial of imatinib in patients with refractory/relapsed myeloma. Leuk Lymphoma. 2006;47(1):39-42.
48. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer. 2007;7(5):345-
29. Borisa AC, Bhatt HG. A comprehensive
review on Aurora kinase: Small molecule
inhibitors and clinical trial studies. Eur J Med
Chem. 2017;140:1-19. 356.
30. Hay AE, Murugesan A, DiPasquale AM, et al. A phase II study of AT9283, an aurora kinase inhibitor, in patients with relapsed or refrac- tory multiple myeloma: NCIC clinical trials group IND.191. Leuk Lymphoma. 2016;57(6):1463-1466.
49. Carter TA, Wodicka LM, Shah NP, et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci U S A. 2005;102(31):11011-11016.
50. Giles FJ, Swords RT, Nagler A, et al. MK- 0457, an Aurora kinase and BCR-ABL inhibitor, is active in patients with BCR-ABL T315I leukemia. Leukemia. 2013;27(1):113-
31. Rosenthal A, Kumar S, Hofmeister C, et al. A
Phase Ib Study of the combination of the
Aurora Kinase Inhibitor Alisertib (MLN8237) 117.
and Bortezomib in Relapsed Multiple
Myeloma. Br J Haematol. 2016;174(2):323-325.
32. Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer. 2011;
11(1):23-34.
33. Buzzeo R, Enkemann S, Nimmanapalli R, et
al. Characterization of a R115777-resistant human multiple myeloma cell line with cross- resistance to PS-341. Clin Cancer Res. 2005;11(16):6057-6064.
34. Lunghi P, Giuliani N, Mazzera L, et al. Targeting MEK/MAPK signal transduction module potentiates ATO-induced apoptosis in multiple myeloma cells through multiple signaling pathways. Blood. 2008; 112(6): 2450-2462.
35. Li ZW, Chen H, Campbell RA, Bonavida B, Berenson JR. NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol 2008;15(4):391-399.
36. Ranuncolo SM, Pittaluga S, Evbuomwan MO, Jaffe ES, Lewis BA. Hodgkin lymphoma requires stabilized NIK and constitutive RelB
51. Donato NJ, Fang D, Sun H, Giannola D, Peterson LF, Talpaz M. Targets and effectors of the cellular response to aurora kinase inhibitor MK-0457 (VX-680) in imatinib sen- sitive and resistant chronic myelogenous leukemia. Biochem Pharmacol. 2010; 79(5):688-697.
52. Shah NP, Skaggs BJ, Branford S, et al. Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR- ABL mutations with altered oncogenic poten- cy. J Clin Invest. 2007;117(9):2562-2569.
53. Traynor AM, Hewitt M, Liu G, et al. Phase I dose escalation study of MK-0457, a novel Aurora kinase inhibitor, in adult patients with advanced solid tumors. Cancer Chemother Pharmacol. 2011;67(2):305-314.
54. Aichberger KJ, Mayerhofer M, Krauth MT, et al. Identification of mcl-1 as a BCR/ABL- dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood. 2005; 105(8):3303-3311.
haematologica | 2019; 104(12)
2481


































































































   165   166   167   168   169