Page 93 - 2019_11 Resto del Mondo-web
P. 93

B. divergens infection in HbSS
13. Macharia AW, Mochamah G, Uyoga S, et al. The clinical epidemiology of sickle cell anemia In Africa. Am J Hematol. 2018;93(3):363-370.
14. Aidoo M, Terlouw DJ, Kolczak MS, et al. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet. 2002;359(9314):1311-1312.
15. Gong L, Parikh S, Rosenthal PJ, Greenhouse B. Biochemical and immunological mecha- nisms by which sickle cell trait protects against malaria. Malar J. 2013;12:317.
16. Beaudry JT, Krause MA, Diakite SA, et al. Ex-vivo cytoadherence phenotypes of Plasmodium falciparum strains from Malian children with hemoglobins A, S, and C. PloS One. 2014;9(3):e92185.
17. Western KA, Benson GD, Gleason NN, Healy GR, Schultz MG. Babesiosis in a Massachusetts resident. N Engl J Med. 1970;283(16):854-856.
18. Skrabalo Z, Deanovic Z. Piroplasmosis in man; report of a case. Doc Med Geogr Trop. 1957;9(1):11-16.
19. Bloch EM, Herwaldt BL, Leiby DA, et al. The third described case of transfusion- transmitted Babesia duncani. Transfusion. 2012;52(7):1517-1522.
20. Conrad PA, Kjemtrup AM, Carreno RA, et al. Description of Babesia duncani n.sp. (Apicomplexa: Babesiidae) from humans and its differentiation from other piro- plasms. Int J Parasitol. 2006;36(7):779-789.
21. Jiang JF, Zheng YC, Jiang RR, et al. Epidemiological, clinical, and laboratory characteristics of 48 cases of "Babesia venato- rum" infection in China: a descriptive study. Lancet Infect Dis. 2015;15(2):196-203.
22. Sun Y, Li SG, Jiang JF, et al. Babesia venato- rum infection in child, China. Emerg Infect Dis. 2014;20(5):896-897.
23. Haselbarth K, Tenter AM, Brade V, Krieger G, Hunfeld KP. First case of human babesio- sis in Germany - Clinical presentation and molecular characterisation of the pathogen. Int J Med Microbiol. 2007;297(3):197-204.
24. Herwaldt BL, Caccio S, Gherlinzoni F, et al. Molecular characterization of a non-Babesia divergens organism causing zoonotic babesiosis in Europe. Emerg Infect Dis. 2003;9(8):942-948.
25. Yabsley MJ, Shock BC. Natural history of Zoonotic Babesia: Role of wildlife reser- voirs. Int J Parasitol Parasites Wildl. 2013; 2:18-31.
26. Gubernot DM, Nakhasi HL, Mied PA, Asher DM, Epstein JS, Kumar S. Transfusion-transmitted babesiosis in the United States: summary of a workshop. Transfusion. 2009;49(12):2759-2771.
27. Leiby DA. Transfusion-associated babesio- sis: shouldn't we be ticked off? Ann Intern
Med. 2011;155(8):556-557.
28. Lobo CA, Cursino-Santos JR, Alhassan A,
Rodrigues M. Babesia: an emerging infec- tious threat in transfusion medicine. PLoS Pathog. 2013;9(7):e1003387.
29. Karkoska K, Louie J, Appiah-Kubi AO, et al. Transfusion-transmitted babesiosis leading to severe hemolysis in two patients with sickle cell anemia. Pediatr Blood Cancer 2018;65(1).
30. Cushing M, Shaz B. Transfusion-transmit- ted babesiosis: achieving successful mitiga- tion while balancing cost and donor loss. Transfusion. 2012;52(7):1404-1407.
31. Cursino-Santos JR, Singh M, Pham P, Lobo CA. A novel flow cytometric application discriminates among the effects of chemi- cal inhibitors on various phases of Babesia divergens intraerythrocytic cycle. Cytometry A. 2017;91(3):216-231.
32. Gorenflot A, Brasseur P, Precigout E, L'Hostis M, Marchand A, Schrevel J. Cytological and immunological responses to Babesia divergens in different hosts: ox, gerbil, man. Parasitol Res. 1991;77(1):3-12.
33. Lobo CA. Babesia divergens and Plasmodium falciparum use common receptors, gly- cophorins A and B, to invade the human red blood cell. Infect Immun. 2005; 73(1):649-651.
41. Lobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion. Curr Opin Hematol. 2012;19(3):170-175.
42. Cursino-Santos JR, Halverson G, Rodriguez M, Narla M, Lobo CA. Identification of binding domains on red blood cell gly- cophorins for Babesia divergens. Transfusion. 2014;54(4):982-989.
43. Friedman MJ. Erythrocytic mechanism of sickle cell resistance to malaria. Proc Natl Acad Sci U S A. 1978;75(4):1994-1997.
44. Pasvol G, Weatherall DJ, Wilson RJ. Cellular mechanism for the protective effect of haemoglobin S against P. falci- parum malaria. Nature. 1978; 274 (5672):701-703.
45. Pasvol G. The interaction between sickle haemoglobin and the malarial parasite Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1980;74(6):701-705.
46. Tiffert T, Lew VL, Ginsburg H, Krugliak M, Croisille L, Mohandas N. The hydration state of human red blood cells and their susceptibility to invasion by Plasmodium fal- ciparum. Blood. 2005;105(12):4853-4860.
47. Glushakova S, Humphrey G, Leikina E, Balaban A, Miller J, Zimmerberg J. New stages in the program of malaria parasite egress imaged in normal and sickle erythro- cytes. Curr Biol. 2010;20(12):1117-1121.
48. Lew VL, Bookchin RM. Ion transport pathology in the mechanism of sickle cell dehydration. Physiol Rev. 2005;85(1):179-
34. Cursino-Santos JR, Singh M, Pham P,
Rodriguez M, Lobo CA. Babesia divergens
builds a complex population structure com-
posed of specific ratios of infected cells to 200.
ensure a prompt response to changing envi- ronmental conditions. Cell Microbiol. 2016;18(6):859-874.
35. Harrod VL, Howard TA, Zimmerman SA, Dertinger SD, Ware RE. Quantitative analysis of Howell-Jolly bodies in children with sickle cell disease. Exp Hematol. 2007; 35(2):179-183.
36. El Hoss S, Dussiot M, Renaud O, Brousse V, El Nemer W. A novel non-invasive method to measure splenic filtration function in humans. Haematologica. 2018; 103(10):e436-e439.
37. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010; 376(9757):2018-2031.
38. Bunn HF. The triumph of good over evil: protection by the sickle gene against malar- ia. Blood. 2013;121(1):20-25.
39. Elguero E, Delicat-Loembet LM, Rougeron V, et al. Malaria continues to select for sick- le cell trait in Central Africa. Proc Natl Acad Sci U S A. 2015;112(22):7051-7054.
40. Yi W, Bao W, Rodriguez M, et al. Robust adaptive immune response against Babesia microti infection marked by low parasitemia in a murine model of sickle cell disease. Blood Adv. 2018;2(23):3462-3478.
49. Goheen MM, Wegmuller R, Bah A, et al. Anemia Offers Stronger Protection Than Sickle Cell Trait Against the Erythrocytic Stage of Falciparum Malaria and This Protection Is Reversed by Iron Supplementation. EBioMedicine. 2016; 14:123-130.
50. Luzzatto L, Nwachuku-Jarrett ES, Reddy S. Increased sickling of parasitised erythro- cytes as mechanism of resistance against malaria in the sickle-cell trait. Lancet. 1970; 1(7642):319-321.
51. Archer NM, Petersen N, Clark MA, Buckee CO, Childs LM, Duraisingh MT. Resistance to Plasmodium falciparum in sickle cell trait erythrocytes is driven by oxygen-depen- dent growth inhibition. Proc Natl Acad Sci U S A. 2018;115(28):7350-7355.
52. Cholera R, Brittain NJ, Gillrie MR, et al. Impaired cytoadherence of Plasmodium fal- ciparum-infected erythrocytes containing sickle hemoglobin. Proc Natl Acad Sci U S A. 2008;105(3):991-996.
53. Diakite SA, Ndour PA, Brousse V, et al. Stage-dependent fate of Plasmodium falci- parum-infected red blood cells in the spleen and sickle-cell trait-related protection against malaria. Malar J. 2016;15(1):482.
haematologica | 2019; 104(11)
2199


































































































   91   92   93   94   95