Page 36 - 2019_11 Resto del Mondo-web
P. 36

A. Frisch and Y. Ofran
Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia. Cancer Cell. 2016;29(2):186-200.
24. Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol. 2015;12(6):344-357.
25. Paulsson K, Horvat A, Strombeck B, et al. Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2008;47(1):26-33.
26. Wiemels JL, Kang M, Chang JS, et al. Backtracking RAS mutations in high hyper- diploid childhood acute lymphoblastic leukemia. Blood Cells Mol Dis. 2010;45(3): 186-191.
27. Chiaretti S, Messina M, Grammatico S, et al. Rapid identification of BCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quanti- tative real time-polymerase chain reaction: clinical, prognostic and therapeutic implica- tions. Br J Haematol. 2018;181(5):642-652.
28. Roberts KG, Pei D, Campana D, et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32(27):3012-3020.
29. Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296-307.
30. Ofran Y, Izraeli S. BCR-ABL (Ph)-like acute leukemia-Pathogenesis, diagnosis and thera- peutic options. Blood Rev. 2017;31(2):11-16.
31. Harvey RC, Mullighan CG, Wang X, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lym- phoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical char- acteristics, and outcome. Blood. 2010;116(23):4874-4884.
32. Loh ML, Zhang J, Harvey RC, et al. Tyrosine kinome sequencing of pediatric acute lym- phoblastic leukemia: a report from the Children's Oncology Group TARGET Project. Blood. 2013;121(3):485-488.
33. Ofran Y. Activated kinases in ALL: time to act. Blood 2017;129(25):3280-3282.
34. Maese L, Tasian SK, Raetz EA. How is the Ph-like signature being incorporated into ALL therapy? Best Pract Res Clin Haematol. 2017;30(3):222-228.
35. Robin AJ, Peterson JF, Grignon JW Jr, et al. Identification of high-risk cryptic CRLF2 rearrangements in B-cell acute lymphoblas- tic leukemia utilizing an FGFR3/IGH dual- color dual-fusion DNA probe set. J Pediatr Hematol Oncol. 2017;39(4):e207-e210.
36. Harvey RC, Kang H, Roberts KG, et al. Development and validation of a highly sen- sitive and specific gene expression classifier to prospectively screen and identify B-pre- cursor acute lymphoblastic leukemia (ALL) patients with a Philadelphia chromosome- like (“Ph-like” or “BCR-ABL1-like”) signature for therapeutic targeting and clinical inter- vention Blood. 2013;122(21):826.
37. Roberts KG, Reshmi SC, Harvey RC, et al. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children's Oncology Group. Blood. 2018;132(8):815-824.
38. Fasan A, Kern W, Nadarajah N, et al. Three steps to the diagnosis of adult Ph-like ALL. Blood. 2015;126(23):2610.
39. Lamanna N, Heffner LT, Kalaycio M, et al.
Treatment of adults with acute lymphoblas- tic leukemia: do the specifics of the regimen matter?: Results from a prospective random- ized trial. Cancer. 2013;119(6):1186-1194.
40. El-Cheikh J, El Dika I, Massoud R, et al. Hyper-CVAD compared with BFM-like chemotherapy for the treatment of adult acute lymphoblastic leukemia. A retrospec- tive single-center analysis. Clin Lymphoma Myeloma Leuk. 2017;17(3):179-185.
41. Erkut N, Akidan O, Selim Batur D, Karabacak V, Sonmez M. Comparison between Hyper-CVAD and PETHEMA ALL-93 in adult acute lymphoblastic leukemia: a single-center study. Chemo- therapy. 2018;63(4):207-213.
42. Garcia-Manero G, Kantarjian HM. The hyper-CVAD regimen in adult acute lym- phocytic leukemia. Hematol Oncol Clin North Am. 2000;14(6):1381-1396, x-xi.
43. Offidani M, Corvatta L, Malerba L, et al. Comparison of two regimens for the treat- ment of elderly patients with acute lym- phoblastic leukaemia (ALL). Leuk Lymphoma. 2005;46(2):233-238.
44. Sancho JM, Ribera JM, Xicoy B, et al. Results of the PETHEMA ALL-96 trial in elderly patients with Philadelphia chromosome- negative acute lymphoblastic leukemia. Eur J Haematol. 2007;78(2):102-110.
45. Schmiegelow K, Forestier E, Hellebostad M, et al. Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):345-354.
46. Moricke A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24(2):265-284.
47. Seibel NL, Steinherz PG, Sather HN, et al. Early postinduction intensification therapy improves survival for children and adoles- cents with high-risk acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood. 2008;111(5):2548- 2555.
48. Pui CH, Pei D, Raimondi SC, et al. Clinical impact of minimal residual disease in chil- dren with different subtypes of acute lym- phoblastic leukemia treated with response- adapted therapy. Leukemia. 2017;31(2):333- 339.
49. O'Connor D, Enshaei A, Bartram J, et al. Genotype-specific minimal residual disease interpretation improves stratification in pediatric acute lymphoblastic leukemia. J Clin Oncol. 2018;36(1):34-43.
50. Vora A, Goulden N, Mitchell C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2014;15(8):809-818.
51. Maury S, Chevret S, Thomas X, et al. Rituximab in B-lineage adult acute lym- phoblastic leukemia. N Engl J Med. 2016; 375(11):1044-1053.
52. Clavell LA, Gelber RD, Cohen HJ, et al. Four-agent induction and intensive asparagi- nase therapy for treatment of childhood acute lymphoblastic leukemia. N Engl J Med. 1986;315(11):657-663.
53. Faderl S, Thomas DA, O'Brien S, et al. Augmented hyper-CVAD based on dose- intensified vincristine, dexamethasone, and asparaginase in adult acute lymphoblastic leukemia salvage therapy. Clin Lymphoma
Myeloma Leuk. 2011;11(1):54-59.
54. Hoelzer D, Walewski J, Dohner H, et al. Improved outcome of adult Burkitt lym- phoma/leukemia with rituximab and chemotherapy: report of a large prospective multicenter trial. Blood. 2014;124(26):3870-
3879.
55. Mullighan CG, Zhang J, Harvey RC, et al.
JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2009;106(23):9414-9418.
56. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010;115(26):5312-5321.
57. Maude SL, Tasian SK, Vincent T, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lym- phoblastic leukemia. Blood. 2012;120(17): 3510-3518.
58. Tasian SK, Teachey DT, Li Y, et al. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft mod- els of Ph-like acute lymphoblastic leukemia. Blood. 2017;129(2):177-187.
59. Tasian SK, Assad A, Hunter DS, Du Y, Loh ML. A phase 2 study of ruxolitinib with chemotherapy in children with Philadelphia chromosome-like acute lymphoblastic leukemia (INCB18424-269/AALL1521): dose-finding results from the part 1 safety phase. Blood. 2018;132(1):555.
60. Loh ML, Tasian SK, Rabin KR, et al. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: A Children's Oncology Group phase 1 con- sortium study (ADVL1011). Pediatr Blood Cancer. 2015;62(10):1717-1724.
61. Mayfield JR, Czuchlewski DR, Gale JM, et al. Integration of ruxolitinib into dose-inten- sified therapy targeted against a novel JAK2 F694L mutation in B-precursor acute lym- phoblastic leukemia. Pediatr Blood Cancer. 2017;64(5).
62. Bose P, Verstovsek S. JAK2 inhibitors for myeloproliferative neoplasms: what is next? Blood. 2017;130(2):115-125.
63. Nikolaev SI, Garieri M, Santoni F, et al. Frequent cases of RAS-mutated Down syn- drome acute lymphoblastic leukaemia lack JAK2 mutations. Nat Commun. 2014;5: 4654.
64. Suryani S, Bracken LS, Harvey RC, et al. Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK- mutated acute lymphoblastic leukemia. Mol Cancer Ther. 2015;14(2):364-374.
65. Zhang Q, Shi C, Han L, et al. Inhibition of mTORC1/C2 signaling improves anti- leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget. 2018;9(8):8027-8041.
66. Pemmaraju N, Kantarjian H, Kadia T, et al. A phase I/II study of the Janus kinase (JAK)1 and 2 inhibitor ruxolitinib in patients with relapsed or refractory acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2015;15(3):171-176.
67. Lengline E, Beldjord K, Dombret H, et al. Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lym- phoblastic leukemia with EBF1-PDGFRB fusion. Haematologica. 2013;98(11):e146- 148.
68. Weston BW, Hayden MA, Roberts KG, et al.
2142
haematologica | 2019; 104(11)


































































































   34   35   36   37   38