Page 217 - 2019_11 Resto del Mondo-web
P. 217

IFNγ in immune-mediated graft failure
9. Chen J, Lipovsky K, Ellison FM, Calado RT, Young NS. Bystander destruction of hematopoietic progenitor and stem cells in a mouse model of infusion-induced bone mar- row failure. Blood. 2004;104(6):1671-1678.
type in a chronic infection without impair- ing T cell expansion and survival. J Exp Med. 2016;213(9):1819-1834.
21. Roesler J, Horwitz ME, Picard C, et al. Hematopoietic stem cell transplantation for complete IFN-γ receptor 1 deficiency: a multi-institutional survey. J Pediatr. 2004; 145(6):806-812.
22. Abe Y, Choi I, Hara K, et al. Hemophagocytic syndrome: a rare compli- cation of allogeneic nonmyeloablative hematopoietic stem cell transplantation. Bone Marrow Transplant. 2002;29(9):799- 801.
23. Takagi S, Masuoka K, Uchida N, et al. High incidence of haemophagocytic syndrome following umbilical cord blood transplanta- tion for adults. Br J Haematol. 2009; 147(4):543-553.
24. Bracaglia C, de Graaf K, Pires Marafon D, et al. Elevated circulating levels of interferon-γ and interferon-γ-induced chemokines char- acterise patients with macrophage activa- tion syndrome complicating systemic juve- nile idiopathic arthritis. Ann Rheum Dis. 2017;76(1):166-172.
25. Buatois V, Chatel L, Cons L, et al. Use of a mouse model to identify a blood biomarker for IFNγ activity in pediatric secondary hemophagocytic lymphohistiocytosis. Transl Res. 2017;180:37-52.e2.
26. Henter JI, Elinder G, Soder O, Hansson M, Andersson B, Andersson U. Hypercytokinemia in familial hemophago- cytic lymphohistiocytosis. Blood. 1991; 78(11):2918-2922.
27. Xu XJ, Tang YM, Song H, et al. Diagnostic accuracy of a specific cytokine pattern in hemophagocytic lymphohistiocytosis in children. J Pediatr. 2012;160(6):984-990.e1.
28. Yang SL, Xu XJ, Tang YM, et al. Associations between inflammatory cytokines and organ damage in pediatric patients with hemo- phagocytic lymphohistiocytosis. Cytokine. 2016;85:14-17.
29. Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lym- phohistiocytosis (HLH): CD8+ T cells and interferon γ are essential for the disorder. Blood. 2004;104(3):735-743.
30. Paczesny S. Biomarkers for posttransplanta- tion outcomes. Blood. 2018;131(20):2193- 2204.
31. Paczesny S, Hakim FT, Pidala J, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: III. The 2014 Biomarker Working Group Report. Biol Blood Marrow Transplant. 2015;21(5):780-792.
32. Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol. 2011;89(2): 207-215.
33. Fahmy NM, Yamani MH, Starling RC, et al. Chemokine and chemokine receptor gene expression indicates acute rejection of human cardiac transplants. Transplantation. 2003;75(1):72-78.
34. Gupta A, Broin PO, Bao Y, et al. Clinical and molecular significance of microvascular inflammation in transplant kidney biopsies. Kidney Int. 2016;89(1):217-225.
35. Medoff BD, Wain JC, Seung E, et al. CXCR3 and its ligands in a murine model of obliter- ative bronchiolitis: regulation and function. J Immunol. 2006;176(11):7087-7095.
36. AnQ,HuSY,XuanCM,JinMW,JiQ,Wang Y. Interferon γ and interleukin 10 polymor- phisms in Chinese children with hemo- phagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2017;64(9).
37. Locatelli F, Jordan M, Allen C, et al. Safety and efficacy of emapalumab in pediatric patients with primary hemophagocytic lym- phohistiocytosis. Blood. 2018;132(Suppl 1):LBA-6.
38. Prencipe G, Caiello I, Pascarella A, et al. Neutralization of interferon-γ reverts clinical and laboratory features in a mouse model of macrophage activation syndrome. J Allergy Clin Immunol. 2018 ;141(4):1439-1449.
39. Imahashi N, Inamoto Y, Ito M, et al. Clinical significance of hemophagocytosis in BM clot sections during the peri-engraftment period following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2012; 47(3):387-394.
40. Ferris RL, Lu B, Kane LP. Too much of a good thing? Tim-3 and TCR signaling in T cell exhaustion. J Immunol. 2014;193(4):1525- 1530.
41. Jin HT, Anderson AC, Tan WG, et al. Cooperation of Tim-3 and PD-1 in CD8 T- cell exhaustion during chronic viral infec- tion. Proc Natl Acad Sci U S A. 2010; 107(33):14733-14738.
42. Ikehara Y, Yasunami Y, Kodama S, et al. CD4(+) Valpha14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J Clin Invest. 2000; 105(12):1761-1767.
43. Lin H, Nieda M, Rozenkov V, Nicol AJ. Analysis of the effect of different NKT cell subpopulations on the activation of CD4 and CD8 T cells, NK cells, and B cells. Exp Hematol. 2006;34(3):289-295.
44. Zeglen S, Zakliczynski M, Wozniak-Grygiel E, et al. Mixed cellular and humoral acute rejection in elective biopsies from heart transplant recipients. Transplant Proc. 2009; 41(8):3202-3205.
45. Grant CR, Holder BS, Liberal R, et al. Immunosuppressive drugs affect interferon (IFN)-γ and programmed cell death 1 (PD-1) kinetics in patients with newly diagnosed autoimmune hepatitis. Clin Exp Immunol. 2017;189(1):71-82.
10. de Bruin AM, Demirel O, Hooibrink B, Brandts CH, Nolte MA. Interferon-γ impairs proliferation of hematopoietic stem cells in mice. Blood. 2013;121(18):3578-3585.
11. Lin FC, Karwan M, Saleh B, et al. IFN-γ caus- es aplastic anemia by altering hematopoietic stem/progenitor cell composition and dis- rupting lineage differentiation. Blood. 2014;124(25):3699-3708.
12. Maciejewski J, Selleri C, Anderson S, Young NS. Fas antigen expression on CD34+ human marrow cells is induced by interfer- on γ and tumor necrosis factor α and poten- tiates cytokine-mediated hematopoietic suppression in vitro. Blood. 1995;85(11): 3183-3190.
13. Rottman M, Soudais C, Vogt G, et al. IFN-γ mediates the rejection of haematopoietic stem cells in IFN-γR1-deficient hosts. PLoS Med. 2008;5(1):e26.
14. Selleri C, Maciejewski JP, Sato T, Young NS. Interferon-γ constitutively expressed in the stromal microenvironment of human mar- row cultures mediates potent hematopoietic inhibition. Blood. 1996; 87(10):4149-4157.
15. Kawashima N, Terakura S, Nishiwaki S, et al. Increase of bone marrow macrophages and CD8+ T lymphocytes predict graft fail- ure after allogeneic bone marrow or cord blood transplantation. Bone Marrow Transplant. 2017;52(8):1164-1170.
16. Koyama M, Hashimoto D, Nagafuji K, et al. Expansion of donor-reactive host T cells in primary graft failure after allogeneic hematopoietic SCT following reduced- intensity conditioning. Bone Marrow Transplant. 2014;49(1):110-115.
17. Jordan M, Locatelli F, Allen C, et al. A Novel Targeted Approach to the Treatment of Hemophagocytic Lymphohistiocytosis (HLH) with an Anti-Interferon γ (IFN γ) Monoclonal Antibody (mAb), NI-0501: First Results from a Pilot Phase 2 Study in Children with Primary HLH. Blood. 2015; 126(23):3.
18. Ciurea SO, Thall PF, Milton DR, et al. Complement-Binding Donor-Specific Anti- HLA Antibodies and Risk of Primary Graft Failure in Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2015;21(8):1392-1398.
19. Messina C, Zecca M, Fagioli F, et al. Outcomes of Children with Hemophagocytic Lymphohistiocytosis Given Allogeneic Hematopoietic Stem Cell Transplantation in Italy. Biol Blood Marrow Transplant. 2018;24(6):1223-1231.
20. Utzschneider DT, Alfei F, Roelli P, et al. High antigen levels induce an exhausted pheno-
haematologica | 2019; 104(11)
2323


































































































   215   216   217   218   219