Page 38 - 2019_10 resto del Mondo_web
P. 38

D. Forte et al.
ic adaptation to an adipose tissue niche. Cell
stem cell. 2016;19(1):23-37.
18. Tabe Y, Saitoh K, Yang H, et al. Inhibition of
FAO in AML co-cultured with BM adipocytes: mechanisms of survival and chemosensitization to cytarabine. Sci Rep. 2018;8(1):16837.
19. Farge T, Saland E, de Toni F, et al. Chemotherapy resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017; 7(7):716- 735.
20. Tabe Y, Yamamoto S, Saitoh K, et al. Bone marrow adipocytes facilitate fatty acid oxi- dation activating AMPK and a transcription- al network supporting survival of acute monocytic leukemia cells. Cancer Res. 2017;77(6):1453-1464.
21. Sanjuan-Pla A, Macaulay IC, Jensen CT, et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierar- chy. Nature. 2013;502(7470):232-236.
22. Grover A, Sanjuan-Pla A, Thongjuea S, et al. Single-cell RNA sequencing reveals molecu- lar and functional platelet bias of aged haematopoietic stem cells. Nat Commun. 2016;7:11075.
23. Gekas C, Graf T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood. 2013;121(22):4463-4472.
24. Yamamoto R, Morita Y, Ooehara J, et al. Clonal analysis unveils self-renewing line- age-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013;154(5):1112-1126.
25. Frisch BJ, Hoffman CM, Latchney SE, et al. Aged marrow macrophages expand platelet- biased hematopoietic stem cells via inter- leukin1B. JCI Insight. 2019;5:pii 124213.
26. Essers MA, Offner S, Blanco-Bose WE, et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458(7240): 904-908.
27. Haas S, Hansson J, Klimmeck D, et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. cell stem cell. 2015;17(4):422-434.
28. Walter D, Lier A, Geiselhart A, et al. Exit from dormancy provokes DNA-damage- induced attrition in haematopoietic stem cells. Nature. 2015;520(7548):549-552.
29. Hirche C, Frenz T, Haas SF, et al. Systemic virus infections differentially modulate cell cycle state and functionality of long-term hematopoietic stem cells in vivo. Cell Rep. 2017;19(11):2345-2356.
30. Arranz L, Sanchez-Aguilera A, Martin-Perez D, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512(7512):78-81.
31. Schneider RK, Mullally A, Dugourd A, et al. Gli1(+) mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell. 2017;20(6):785-800.e8.
32. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, et al. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell. 2017;169(5):807-823.
33. Laurenti E, Frelin C, Xie S, et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell. 2015;16(3):302-313.
blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412- 1421.
49. McClanahan F, Riches JC, Miller S, et al. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging- related immune defects in the Emicro-TCL1 CLL mouse model. Blood. 2015;126(2):212-
34. Belluschi S, Calderbank EF, Ciaurro V, et al. Myelo-lymphoid lineage restriction occurs
in the human haematopoietic stem cell com-
partment before lymphoid-primed multipo-
tent progenitors. Nat Commun. 2018;9(1):
4100. 221.
35. Tikhonova AN, Dolgalev I, Hu H, et al. The bone marrow microenvironment at single- cell resolution. Nature. 2019;569(7755):222- 228.
36. Hallek M, Bergsagel PL, Anderson KC. Multiple myeloma: increasing evidence for a multistep transformation process. Blood. 1998;91(1):3-21.
37. Mouhieddine TH, Weeks LD, Ghobrial IM. Monoclonal gammopathy of undetermined significance. Blood. 2019;133(23):2484-2494.
38. Manier S, Park J, Capelletti M, et al. Whole- exome sequencing of cell-free DNA and cir- culating tumor cells in multiple myeloma. Nat Commun. 2018;9(1):1691.
39. Mishima Y, Paiva B, Shi J, et al. The muta- tional landscape of circulating tumor cells in multiple myeloma. Cell Rep. 2017;19(1): 218-224.
40. McCarron MJ, Park PW, Fooksman DR. CD138 mediates selection of mature plasma cells by regulating their survival. Blood. 2017;129(20):2749-2759.
41. Lutzny G, Kocher T, Schmidt-Supprian M, et al. Protein kinase c-beta-dependent activa- tion of NF-kappaB in stromal cells is indis- pensable for the survival of chronic lympho- cytic leukemia B cells in vivo. Cancer Cell. 2013;23(1):77-92.
42. Mangolini M, Gotte F, Moore A, et al. Notch2 controls non-autonomous Wnt-sig- nalling in chronic lymphocytic leukaemia. Nat Commun. 2018;9(1):3839.
43. Nguyen PH, Fedorchenko O, Rosen N, et al. LYN kinase in the tumor microenvironment is essential for the progression of chronic lymphocytic leukemia. Cancer Cell. 2016; 30(4):610-622.
44. Medyouf H, Mossner M, Jann JC, et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell. 2014;14(6):824-837.
45. Rouault-Pierre K, Mian SA, Goulard M, et al. Preclinical modeling of myelodysplastic syn- dromes. Leukemia. 2017;31(12):2702-2708.
46. Abarrategi A, Mian SA, Passaro D, et al. Modeling the human bone marrow niche in mice: from host bone marrow engraftment to bioengineering approaches. J Exp Med. 2018;215(3):729-743.
47. Ramsay AG, Clear AJ, Kelly G, et al. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood. 2009;114(21):4713- 4720.
48. Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be
50. McClanahan F, Hanna B, Miller S, et al. PD- L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood. 2015;126(2):203-211.
51. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90(2):720-724.
52. Perna F, Berman SH, Soni RK, et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric anti- gen receptor therapy of AML. Cancer Cell. 2017;32(4):506-519.e5.
53. Bonifant CL, Velasquez MP, Gottschalk S. Advances in immunotherapy for pediatric acute myeloid leukemia. Expert Opin Biol Ther. 2018;18(1):51-63.
54. Baran N, Konopleva M. Molecular path- ways: hypoxia-activated prodrugs in cancer therapy. Clin Cancer Res. 2017;23(10):2382- 2390.
55. Benito J, Ramirez MS, Millward NZ, et al. Hypoxia-activated prodrug TH-302 targets hypoxic bone marrow niches in preclinical leukemia models. Clin Cancer Res. 2016;22(7):1687-1698.
56. Molina JR, Sun Y, Protopopova M, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018;24(7):1036-1046.
57. Verger E, Soret-Dulphy J, Maslah N, et al. Ropeginterferon alpha-2b targets JAK2V617F-positive polycythemia vera cells in vitro and in vivo. Blood Cancer J. 2018;8(10):94.
58. Abraham M, Pereg Y, Bulvik B, et al. Single dose of the CXCR4 antagonist BL-8040 induces rapid mobilization for the collection of human CD34(+) cells in healthy volun- teers. Clin Cancer Res. 2017;23(22):6790- 6801.
59. Abraham M, Klein S, Bulvik B, et al. The CXCR4 inhibitor BL-8040 induces the apop- tosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia. 2017;31(11):2336-2346.
60. Ell B, Kang Y. SnapShot: bone metastasis. Cell. 2012;151(3):690-690.
61. Wang H, Yu C, Gao X, et al. The osteogenic niche promotes early-stage bone coloniza- tion of disseminated breast cancer cells. Cancer Cell. 2015;27(2):193-210.
62. Wang H, Tian L, Liu J, et al. The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell. 2018;34(5):823-839.
1934
haematologica | 2019; 104(10)


































































































   36   37   38   39   40