Page 219 - 2019_10 resto del Mondo_web
P. 219

Clinical and molecular traits of hereditary TTP
Ten candidate ADAMTS13 mutations in six French families with congenital thrombotic thrombocytopenic purpura (Upshaw- Schulman syndrome). J Thromb Haemost. 2004;2(3):424-429.
10. Amorosi EL, Ultmann JE. Thrombotic throm- bocytopenia purpura: Report of 16 cases and review of the literature. Medicine. 1966;45 (2):139-160.
11. Fujimura Y, Matsumoto M, Isonishi A, et al. Natural history of Upshaw-Schulman syn- drome based on ADAMTS13 gene analysis in Japan. J Thromb Haemost. 2011;9 Suppl 1:283-301.
12. Lotta LA, Garagiola I, Palla R, Cairo A, Peyvandi F. ADAMTS13 mutations and poly- morphisms in congenital thrombotic throm- bocytopenic purpura. Hum Mutat. 2010;31(1):11-19.
13. Camilleri RS, Scully M, Thomas M, et al. A phenotype-genotype correlation of ADAMTS13 mutations in congenital throm- botic thrombocytopenic purpura patients treated in the United Kingdom. J Thromb Haemost. 2012;10(9):1792-1801.
14. Joly BS, Boisseau P, Roose E, et al. ADAMTS13 Gene Mutations Influence ADAMTS13 Conformation and Disease Age- Onset in the French Cohort of Upshaw- Schulman Syndrome. Thromb Haemost. 2018;118(11):1902-1917.
15. Pimanda JE, Maekawa A, Wind T, Paxton J, Chesterman CN, Hogg PJ. Congenital throm- botic thrombocytopenic purpura in associa- tion with a mutation in the second CUB domain of ADAMTS13. Blood. 2004;103(2): 627-629.
16. Lotta LA, Wu HM, Musallam KM, Peyvandi F. The emerging concept of residual ADAMTS13 activity in ADAMTS13-defi- cient thrombotic thrombocytopenic purpura. Blood Rev. 2013;27(2):71-76.
17. Lotta LA, Wu HM, Mackie IJ, et al. Residual plasmatic activity of ADAMTS13 is correlat- ed with phenotype severity in congenital thrombotic thrombocytopenic purpura. Blood. 2012;120(2):440-448.
18. Furlan M, Lämmle B. Aetiology and patho- genesis of thrombotic thrombocytopenic pur- pura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving pro- tease. Best Pract Res Clin Haematol. 2001;14(2):437-454.
19. Fujimura Y, Matsumoto M, Kokame K, et al. Pregnancy-induced thrombocytopenia and TTP, and the risk of fetal death, in Upshaw- Schulman syndrome: a series of 15 pregnan- cies in 9 genotyped patients. Br J Haematol. 2009;144(5):742-754.
20. Moatti-Cohen M, Garrec C, Wolf M, et al. Unexpected frequency of Upshaw-Schulman syndrome in pregnancy-onset thrombotic thrombocytopenic purpura. Blood. 2012;119(24):5888-5897.
21. Scully M, Thomas M, Underwood M, et al. Thrombotic thrombocytopenic purpura and pregnancy: presentation, management, and subsequent pregnancy outcomes. Blood. 2014;124(2):211-219.
22. Scully M, Hunt BJ, Benjamin S, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura
and other thrombotic microangiopathies. Br J
Haematol. 2012;158(3):323-335.
23. Schneppenheim R, Kremer Hovinga JA,
Becker T, et al. A common origin of the 4143insA ADAMTS13 mutation. Thromb Haemost. 2006;96(1):3-6.
24. von Krogh AS, Quist-Paulsen P, Waage A, et al. High prevalence of hereditary thrombotic thrombocytopenic purpura in central Norway: from clinical observation to evi- dence. J Thromb Haemost. 2016;14(1):73-82.
25. Kremer Hovinga JA, Heeb SR, Skowronska M, Schaller M. Pathophysiology of thrombot- ic thrombocytopenic purpura and hemolytic uremic syndrome. J Thromb Haemost. 2018;16(4):618-629.
26. Mansouri Taleghani M, von Krogh AS, Fujimura Y, et al. Hereditary thrombotic thrombocytopenic purpura and the heredi- tary TTP registry. Hamostaseologie. 2013; 33(2):138-143.
27. Kremer Hovinga JA, Vesely SK, Terrell DR, Lämmle B, George JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010;115(8):1500-1511.
28. Froehlich-Zahnd R, George JN, Vesely SK, et al. Evidence for a role of anti-ADAMTS13 autoantibodies despite normal ADAMTS13 activity in recurrent thrombotic thrombocy- topenic purpura. Haematologica. 2012; 97(2):297-303.
29. Kato S, Matsumoto M, Matsuyama T, Isonishi A, Hiura H, Fujimura Y. Novel mon- oclonal antibody-based enzyme immunoas- say for determining plasma levels of ADAMTS13 activity. Transfusion. 2006; 46(8):1444-1452.
30. Page EE, Kremer Hovinga JA, Terrell DR, Vesely SK, George JN. Thrombotic thrombo- cytopenic purpura: diagnostic criteria, clinical features, and long-term outcomes from 1995 through 2015. Blood Adv. 2017; 1(10):590-600.
31. Dunnen JT, Dalgleish R, Maglott DR, et al. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum Mutat. 2016;37(6):564-569.
32. Häberle J, Kehrel B, Ritter J, Jürgens H, Lämmle B, Furlan M. New strategies in diag- nosis and treatment of thrombotic thrombo- cytopenic purpura: case report and review. Eur J Pediatr. 1999;158(11):883-887.
33. Scully M, Starke R, Lee R, Mackie I, Machin S, Cohen H. Successful management of preg- nancy in women with a history of thrombot- ic thrombocytopaenic purpura. Blood Coagul Fibrinolysis. 2006;17(6):459-463.
34. Furlan M, Robles R, Galbusera M, et al. von Willebrand factor-cleaving protease in throm- botic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998;339(22):1578-1584.
35. Saha M, McDaniel JK, Zheng XL. Thrombotic thrombocytopenic purpura: pathogenesis, diagnosis and potential novel therapeutics. J Thromb Haemost. 2017; 15(10):1889-1900.
36. Joly BS, Coppo P, Veyradier A. Thrombotic thrombocytopenic purpura. Blood. 2017; 129(21):2836-2846.
37. Matsumoto M, Kokame K, Soejima K, et al. Molecular characterization of ADAMTS13 gene mutations in Japanese patients with Upshaw-Schulman syndrome. Blood.
2004;103(4):1305-1310.
38. Kokame K, Nobe Y, Kokubo Y, Okayama A,
Miyata T. FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. Br J Haematol. 2005;129(1):93-100.
39. Deford CC, Reese JA, Schwartz LH, et al. Multiple major morbidities and increased mortality during long-term follow-up after recovery from thrombotic thrombocytopenic purpura. Blood. 2013;122(12):2023-2029.
40. Falter T, Schmitt V, Herold S, et al. Depression and cognitive deficits as long-term conse- quences of thrombotic thrombocytopenic purpura. Transfusion. 2017; 57(5):1152-1162.
41. Furlan M, Robles R, Solenthaler M, Wassmer M, Sandoz P, Lämmle B. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocy- topenic purpura. Blood. 1997;89(9):3097- 3103.
42. Remuzzi G, Galbusera M, Noris M, et al. von Willebrand factor cleaving protease (ADAMTS13) is deficient in recurrent and familial thrombotic thrombocytopenic pur- pura and hemolytic uremic syndrome. Blood. 2002;100(3):778-785.
43. Fan X, Kremer Hovinga JA, Shirotani-Ikejima H, et al. Genetic variations in complement factors in patients with congenital thrombotic thrombocytopenic purpura with renal insuffi- ciency. Int J Hematol. 2016;103(3):283-291.
44. Bendapudi PK, Hurwitz S, Fry A, et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol. 2017;4(4): e157-e164.
45. Camilleri RS, Cohen H, Mackie IJ, et al. Prevalence of the ADAMTS-13 missense mutation R1060W in late onset adult throm- botic thrombocytopenic purpura. J Thromb Haemost. 2008;6(2):331-338.
46. Furlan M, Robles R, Morselli B, Sandoz P, Lämmle B. Recovery and half-life of von Willebrand factor-cleaving protease after plas- ma therapy in patients with thrombotic thrombocytopenic purpura. Thromb Haemost. 1999;81(1):8-13.
47. Fujimura Y, Kokame K, Yagi H, Isonishi A, Matsumoto M, Miyata T. Hereditary Deficiency of ADAMTS13 Activity: Upshaw–Schulman Syndrome. In: Rodgers GM, ed. ADAMTS13: Biology and Disease. Cham: Springer International Publishing, 2015:73-90.
48. Scully M, Knöbl P, Kentouche K, et al. Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood. 2017;130(19):2055-2063.
49. Rurali E, Banterla F, Donadelli R, et al. ADAMTS13 Secretion and Residual Activity among Patients with Congenital Thrombotic Thrombocytopenic Purpura with and with- out Renal Impairment. Clin J Am Soc Nephrol. 2015;10(11):2002-2012.
50. Shang D, Zheng XW, Niiya M, Zheng XL. Apical sorting of ADAMTS13 in vascular endothelial cells and Madin-Darby canine kidney cells depends on the CUB domains and their association with lipid rafts. Blood. 2006;108(7):2207-2215.
haematologica | 2019; 104(10)
2115


































































































   217   218   219   220   221