Page 164 - 2019_10 resto del Mondo_web
P. 164

M. Steurer et al.
cytotoxicity.26 Thus, combination therapies including anti- CD20 antibodies and novel agents, such as venetoclax together with olaptesed pegol, could be a viable option based on their complementary mechanisms of action in future clinical trials.
In conclusion, the data from our study demonstrate that treatment with olaptesed pegol results in the intended pharmacodynamic effect by effectively mobilizing CLL cells. The high response rate of 86% as well as 3-year overall survival rate of >80% compare favorably with
those achieved by BR alone and in recent BR combination trials. These data together with the benign safety profile warrant further clinical development of this novel CXCL12 inhibitor in combination with targeted anti-CLL drugs in randomized studies.
Acknowledgments
The authors thank the patients who participated in the trial, the clinical staff and the Arbeitsgemeinschaft medikamentöse Tumortherapie (AGMT) for supporting the study in Austria.
References
1. Vater A, Sahlmann J, Kroger N, et al. Hematopoietic stem and progenitor cell mobilization in mice and humans by a first- in-class mirror-image oligonucleotide inhibitor of CXCL12. Clin Pharmacol Ther. 2013;94(1):150-157.
2. Roccaro AM, Sacco A, Purschke WG, et al. SDF-1 inhibition targets the bone marrow niche for cancer therapy. Cell Rep. 2014;9(1):118-128.
3. Hoellenriegel J, Zboralski D, Maasch C, et al. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood. 2014;123(7):1032-1039.
4. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol. 2013;13(3):190-198.
5. Calissano C, Damle RN, Marsilio S, et al. Intraclonal complexity in chronic lympho- cytic leukemia: fractions enriched in recent- ly born/divided and older/quiescent cells. Mol Med. 2011;17(11-12):1374-1382.
6. Marasca R, Maffei R. NOX-A12: mobiliz- ing CLL away from home. Blood. 2014;123(7):952-953.
7. O'Hayre M, Salanga CL, Kipps TJ, Messmer D, Dorrestein PC, Handel TM. Elucidating the CXCL12/CXCR4 signaling network in chronic lymphocytic leukemia through phosphoproteomics analysis. PLoS One. 2010;5(7):e11716.
8. Azab AK, Sahin I, Moschetta M, et al. CXCR7-dependent angiogenic mononu- clear cell trafficking regulates tumor pro- gression in multiple myeloma. Blood. 2014;124(12):1905-1914.
9. Li WW, Hutnik M, Gehr G. Antiangiogenesis in haematological malig- nancies. Br J Haematol. 2008;143(5):622- 631.
10. Hinterseer E, Girbl T, Hutterer E, et al. The spiegelmer Nox-A12 abrogates homing of human CLL cells to bone marrow and
mobilizes murine CLL cells in the Eμ-TCL1 transgenic mouse model Of CLL. Blood. 2013;122(21):4111-4111.
11. Ludwig H, Weisel K, Petrucci MT, et al. Olaptesed pegol, an anti-CXCL12/SDF-1 Spiegelmer, alone and with bortezomib- dexamethasone in relapsed/refractory mul- tiple myeloma: a phase IIa study. Leukemia. 2017;31(4):997-1000.
12. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446-5456.
2017;18(3):297-311.
18. Burger JA. The CLL cell microenvironment.
Adv Exp Med Biol. 2013;792:25-45.
19. ten Hacken E, Burger JA. Microenvironment dependency in chronic lymphocytic leukemia: the basis for new targeted therapies. Pharmacol Ther.
2014;144(3):338-348.
20. Burger JA, Montserrat E. Coming full circle:
70 years of chronic lymphocytic leukemia cell redistribution, from glucocorticoids to inhibitors of B-cell receptor signaling. Blood. 2013;121(9):1501-1509.
21. Visco C, Finotto S, Pomponi F, et al. The combination of rituximab, bendamustine, and cytarabine for heavily pretreated relapsed/refractory cytogenetically high- risk patients with chronic lymphocytic leukemia. Am J Hematol. 2013;88(4):289-
13. Stilgenbauer S, Zenz T. Understanding and
managing ultra high-risk chronic lympho-
cytic leukemia. Hematology Am Soc 293.
Hematol Educ Program. 2010;2010:481-488. 14. Chanan-Khan A, Cramer P, Demirkan F, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previous- ly treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study.
Lancet Oncol. 2016;17(2):200-211.
15. Fischer K, Cramer P, Busch R, et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicen- ter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J
Clin Oncol. 2011;29(26):3559-3566.
16. Seymour JF, Kipps TJ, Eichhorst B, et al. Venetoclax-rituximab in relapsed or refrac- tory chronic lymphocytic leukemia. N Engl
J Med. 2018;378(12): 1107-1120.
17. Zelenetz AD, Barrientos JC, Brown JR, et al. Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol.
22. Jain N, Balakrishnan K, Ferrajoli A, et al. A phase I-II trial of fludarabine, bendamus- tine and rituximab (FBR) in previously treated patients with CLL. Oncotarget. 2017;8(13):22104-22112.
23. Maurer C, Pflug N, Bahlo J, et al. Bendamustine and rituximab in combina- tion with lenalidomide in patients with chronic lymphocytic leukemia. Eur J Haematol. 2016;97(3):253-260.
24. Cramer P, von Tresckow J, Bahlo J, et al. Bendamustine followed by obinutuzumab and venetoclax in chronic lymphocytic leukaemia (CLL2-BAG): primary endpoint analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 2018;19(9):1215-1228.
25. Rogers KA, Huang Y, Ruppert AS, et al. Phase 1b study of obinutuzumab, ibrutinib, and venetoclax in relapsed and refractory chronic lymphocytic leukemia. Blood. 2018;132(15):1568-1572.
26. Zboralski D, Kruschinski A, Vater A. CXCL12 inhibition by Nox-A12 (olaptesed pegol) synergizes with the ADCC activity of CD20 antibodies by increasing NK cell infiltration in a 3D lymphoma model. Blood. 2016;128(22): 3021-3021.
2060
haematologica | 2019; 104(10)


































































































   162   163   164   165   166