Page 200 - 2019_09-HaematologicaMondo-web
P. 200

O.V. Kim et al.
Sanderson H, Savill J. Constitutive death of
platelets leading to scavenger receptor-medi- ated phagocytosis. A caspase-independent cell clearance program. J Biol Chem. 2000;275(8):5987–5996.
31. Jobe SM, Wilson KM, Leo L, et al. Critical role for the mitochondrial permeability tran- sition pore and cyclophilin D in platelet acti- vation and thrombosis. Blood. 2008;111(3): 1257–1265.
32. Choo H-J, Saafir TB, Mkumba L, Wagner MB, Jobe SM. Mitochondrial calcium and reactive oxygen species regulate agonist-ini- tiated platelet phosphatidylserine exposure. Arterioscler Thromb Vasc Biol. 2012;32(12):2946–2955.
33. Yamagishi S, Edelstein D, Du X, Brownlee M. Hyperglycemia potentiates collagen- induced platelet activation through mito- chondrial superoxide overproduction. Diabetes. 2001;50(6):1491–1494.
34. Shneyer BI, Ušaj M, Wiesel-Motiuk N, Regev R, Henn A. ROS induced distribution of mitochondria to filopodia by Myo19 depends on a class specific tryptophan in the motor domain. Sci Rep. 2017;7(1):11577.
35. Boudreau LH, Duchez A-C, Cloutier N, et al. Platelets release mitochondria serving as
substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflamma- tion. Blood. 2014;124(14):2173–2183.
36. Aibibula M, Naseem KM, Sturmey RG. Glucose metabolism and metabolic flexibili- ty in blood platelets. J Thromb Haemost. 2018;16(11):2300–2314.
37. Ravi S, Chacko B, Sawada H, et al. Metabolic plasticity in resting and thrombin activated platelets. PLoS One. 2015;10(4): e0123597.
38. Nayak MK, Dhanesha N, Doddapattar P, et al. Dichloroacetate, an inhibitor of pyruvate dehydrogenase kinases, inhibits platelet aggregation and arterial thrombosis. Blood Adv. 2018;2(15):2029–2038.
39. Adelstein RS, Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interac- tion. Annu Rev Biochem. 1980;49(1):921– 956.
40. Wolf BB, Goldstein JC, Stennicke HR, et al. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood. 1999;94(5): 1683–1692.
41. Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003;83(3):731–801.
42. Martin SJ, O’Brien GA, Nishioka WK, et al. Proteolysis of fodrin (non-erythroid spec- trin) during apoptosis. J Biol Chem. 1995;270(12):6425–6428.
43. Kothakota S, Azuma T, Reinhard C, et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apopto- sis. Science. 1997;278(5336):294–298.
44. Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem. 2005;42(6): 415–431.
45. Nogusa S, Thapa RJ, Dillon CP, et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus. Cell Host Microbe. 2016;20(1):13–24.
46. Gando S, Levi M, Toh C-H. Disseminated intravascular coagulation. Nat Rev Dis Primer. 2016;2:16037.
47. Chang R, Cardenas JC, Wade CE, Holcomb JB. Advances in the understanding of trau- ma-induced coagulopathy. Blood. 2016;128 (8):1043–1049.
48. Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. J Cell Biol. 2010;189(7):1059–1070.
1878
haematologica | 2019; 104(9)


































































































   198   199   200   201   202