Page 186 - 2019_09-HaematologicaMondo-web
P. 186

I. Cortegano et al.
that may provide clues to improve megakaryocyte recon- stitution by using cord blood-derived progenitors for transplantation and for designing better conditions to increase platelet production to treat thrombocytopenic pathologies.
Funding
This work was supported by grants from the Ministerio de Ciencia e Innovación (MICINN SAF2009-12596) and from the Ministerio de Economía y Competitividad (MINECO SAF2012-33916 and SAF2015-70880-R MINECO/FEDER). NS was the recipient of a fellowship from the Centro de Biología
Molecular Severo Ochoa (CBMSO) and IC received a fellow- ship from the MICINN. The CBMSO receives institutional funding from Fundación Ramón Areces. The CNIC is supported by the MEIC and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505).
Acknowledgments
The authors would like to thank Miriam Pérez-Crespo and Eduardo Martorell for help with animal care, Fernando Gonzalez for support with the confocal microscopy and Mark Shefton, medical writer from BioMedRed Company, for editing the manuscript.
References
1. Luc S, Anderson K, Kharazi S, et al. Down- regulation of Mpl marks the transition to lymphoid-primed multipotent progenitors with gradual loss of granulocyte-monocyte potential. Blood. 2008;111(7):3424-3434.
2. Boyer SW, Schroeder AV, Smith-Berdan S, Forsberg EC. All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell stem cell. 2011;9(1):64-73.
3. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progeni- tor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193-197.
4. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lym- phoid progenitors in mouse bone marrow. Cell. 1997;91(5):661-672.
5. Sanjuan-Pla A, Macaulay IC, Jensen CT, et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierar- chy. Nature. 2013;502(7470):232-236.
6. Nishikii H, Kanazawa Y, Umemoto T, et al. Unipotent megakaryopoietic pathway bridging hematopoietic stem cells and mature megakaryocytes. Stem Cells. 2015;33(7):2196-2207.
7. Paul F, Arkin Y, Giladi A, et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell. 2015;163(7):1663-1677.
8. Perie L, Duffy KR, Kok L, de Boer RJ, Schumacher TN. The branching point in erythro-myeloid differentiation. Cell. 2015; 163(7):1655-1662.
9. Nakorn TN, Miyamoto T, Weissman IL. Characterization of mouse clonogenic megakaryocyte progenitors. Proc Natl Acad Sci U S A. 2003;100(1):205-210.
10. Pronk CJ, Rossi DJ, Mansson R, et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloery- throid progenitor cell hierarchy. Cell Stem Cell. 2007;1(4):428-442.
11. Martinez-Agosto JA, Mikkola HK, Hartenstein V, Banerjee U. The hematopoi- etic stem cell and its niche: a comparative view. Genes Dev. 2007;21(23):3044-3060.
12. Mikkola HK, Orkin SH. The journey of developing hematopoietic stem cells. Development. 2006;133(19):3733-3744.
13. Ferkowicz MJ, Starr M, Xie X, et al. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development. 2003;130(18):4393- 4403.
14. Palis J, Robertson S, Kennedy M, Wall C,
Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126(22):5073-5084.
15. Godin IE, Garcia-Porrero JA, Coutinho A, Dieterlen-Lievre F, Marcos MA. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature. 1993;364(6432):67-70.
16. Marcos MA, Godin I, Cumano A, et al. Developmental events from hemopoietic stem cells to B-cell populations and Ig reper- toires. Immunol Rev. 1994;137:155-171.
17. Medvinsky AL, Samoylina NL, Muller AM, Dzierzak EA. An early pre-liver intraembry- onic source of CFU-S in the developing mouse. Nature. 1993;364(6432):64-67.
18. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86(6):897-906.
19. North T, Gu TL, Stacy T, et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development. 1999;126(11):2563-2575.
20. Liakhovitskaia A, Rybtsov S, Smith T, et al. Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this. Development. 2014;141(17): 3319-3323.
21. Tober J, Koniski A, McGrath KE, et al. The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of defini- tive hematopoiesis. Blood. 2007;109(4): 1433-1441.
27. Matsumura G, Sasaki K. The ultrastructure of megakaryopoietic cells of the yolk sac and liver in mouse embryo. Anat Rec. 1988;222(2):164-169.
28. Serrano N, Cortegano I, Ruiz C, et al. Megakaryocytes promote hepatoepithelial liver cell development in E11.5 mouse embryos by cell-to-cell contact and by vas- cular endothelial growth factor A signaling. Hepatology. 2012;56(5):1934-1945.
29. Burnett SH, Kershen EJ, Zhang J, et al. Conditional macrophage ablation in trans- genic mice expressing a Fas-based suicide gene. J Leukoc Biol. 2004;75(4):612-623.
30. Marcos MA, Morales-Alcelay S, Godin IE, Dieterlen-Lievre F, Copin SG, Gaspar ML. Antigenic phenotype and gene expression pattern of lymphohemopoietic progenitors during early mouse ontogeny. J Immunol. 1997;158(6):2627-2637.
31. Gozalbo-Lopez B, Andrade P, Terrados G, et al. A role for DNA polymerase mu in the emerging DJH rearrangements of the post- gastrulation mouse embryo. Mol Cell Biol. 2009;29(5):1266-1275.
32. Eckly A, Heijnen H, Pertuy F, et al. Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood. 2014;123(6):921-930.
33. Charbonneau H, Tonks NK. 1002 protein phosphatases? Annu Rev Cell Biol. 1992; 8:463-493.
34. Matsumura-Takeda K, Sogo S, Isakari Y, et al. CD41+/CD45+ cells without acetyl- cholinesterase activity are immature and a major megakaryocytic population in murine bone marrow. Stem Cells. 2007;25(4):862-
22. Xu MJ, Matsuoka S, Yang FC, et al. Evidence
for the presence of murine primitive megakaryocytopoiesis in the early yolk sac. 870.
Blood. 2001;97(7):2016-2022.
23. Potts KS, Sargeant TJ, Markham JF, et al. A
lineage of diploid platelet-forming cells pre- cedes polyploid megakaryocyte formation in the mouse embryo. Blood. 2014;124 (17):2725-2729.
24. Potts KS, Sargeant TJ, Dawson CA, et al. Mouse prenatal platelet-forming lineages share a core transcriptional program but divergent dependence on MPL. Blood. 2015;126(6):807-816.
25. Pastos KM, Slayton WB, Rimsza LM, Young L, Sola-Visner MC. Differential effects of recombinant thrombopoietin and bone mar- row stromal-conditioned media on neonatal versus adult megakaryocytes. Blood. 2006;108(10):3360-3362.
26. Slayton WB, Wainman DA, Li XM, et al. Developmental differences in megakary- ocyte maturation are determined by the microenvironment. Stem Cells. 2005;23(9): 1400-1408.
35. Thomas ML. The leukocyte common antigen family. Annu Rev Immunol. 1989;7:339-369. 36. Hermiston ML, Xu Z, Weiss A. CD45: a crit-
ical regulator of signaling thresholds in immune cells. Annu Rev Immunol. 2003;21:107-137.
37. Irie-Sasaki J, Sasaki T, Matsumoto W, et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature. 2001;409(6818):349-354.
38. Shivtiel S, Kollet O, Lapid K, et al. CD45 reg- ulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal tra- becules. J Exp Med. 2008;205(10):2381-2395.
39. Shivtiel S, Lapid K, Kalchenko V, et al. CD45 regulates homing and engraftment of imma- ture normal and leukemic human cells in transplanted immunodeficient mice. Exp Hematol. 2011;39(12):1161-1170.e1.
40. Zhang J, Varas F, Stadtfeld M, Heck S, Faust N, Graf T. CD41-YFP mice allow in vivo
1864
haematologica | 2019; 104(9)


































































































   184   185   186   187   188