Page 48 - 2019_08-Haematologica-web
P. 48

N.J. Short and F. Ravandi et al.
(5):422-433.
16. Ravandi F, Jorgensen J, Borthakur G, et al.
Persistence of minimal residual disease assessed by multiparameter flow cytometry is highly prognostic in younger patients with acute myeloid leukemia. Cancer. 2017;123 (3):426-435.
17. Jongen-Lavrencic M, Grob T, Hanekamp D, et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med. 2018;378(13):1189-1199.
18. Freeman SD, Hills RK, Virgo P, et al. Measurable residual disease at induction redefines partial response in acute myeloid leukemia and stratifies outcomes in patients at standard risk without NPM1 mutations. J Clin Oncol. 2018;36(15):1486-1497.
19. Grimwade D, Freeman SD. Defining mini- mal residual disease in acute myeloid leukemia: which platforms are ready for "prime time"? Blood. 2014;124(23):3345- 3355.
20. Marcucci G, Mrozek K, Ruppert AS, et al. Abnormal cytogenetics at date of morpho- logic complete remission predicts short overall and disease-free survival, and higher relapse rate in adult acute myeloid leukemia: results from Cancer and Leukemia Group B study 8461. J Clin Oncol. 2004;22(12):2410- 2418.
21. Chen Y, Cortes J, Estrov Z, et al. Persistence of cytogenetic abnormalities at complete remission after induction in patients with acute myeloid leukemia: prognostic signifi- cance and the potential role of allogeneic stem-cell transplantation. J Clin Oncol. 2011;29(18):2507-2513.
22. Ravandi F, Walter RB, Freeman SD. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018;2(11):1356-1366.
23. Wood BL. Principles of minimal residual dis- ease detection for hematopoietic neoplasms by flow cytometry. Cytometry B Clin Cytom. 2016;90(1):47-53.
24. Baer MR, Stewart CC, Dodge RK, et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implica- tions for residual disease detection (Cancer and Leukemia Group B study 8361). Blood. 2001;97(11):3574-3580.
25. Langebrake C, Brinkmann I, Teigler-Schlegel A, et al. Immunophenotypic differences between diagnosis and relapse in childhood AML: implications for MRD monitoring. Cytometry B Clin Cytom. 2005;63(1):1-9.
26. Terwijn M, Zeijlemaker W, Kelder A, et al. Leukemic stem cell frequency: a strong bio- marker for clinical outcome in acute myeloid leukemia. PLoS One. 2014;9(9): e107587.
27. Bradbury C, Houlton AE, Akiki S, et al. Prognostic value of monitoring a candidate immunophenotypic leukaemic stem/prog- enitor cell population in patients allografted for acute myeloid leukaemia. Leukemia. 2015;29(4):988-991.
28. Zeijlemaker W, Grob T, Meijer R, et al. CD34(+)CD38(-) leukemic stem cell fre- quency to predict outcome in acute myeloid leukemia. Leukemia. 2019;33(5):1102-1112.
29. Ko BS, Wang YF, Li JL, et al. Clinically vali- dated machine learning algorithm for detect- ing residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome. EBioMedicine. 2018;37:91-100.
30. Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with
all-trans retinoic acid: result of the random- ized MRC trial. Blood. 1999;93(12):4131- 4143.
31. Grimwade D, Jovanovic JV, Hills RK, et al. Prospective minimal residual disease moni- toring to predict relapse of acute promyelo- cytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol. 2009;27(22):3650-3658.
32. Krauter J, Gorlich K, Ottmann O, et al. Prognostic value of minimal residual disease quantification by real-time reverse transcrip- tase polymerase chain reaction in patients with core binding factor leukemias. J Clin Oncol. 2003;21(23):4413-4422.
33. Yin JA, O'Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk strat- ification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120(14):2826-2835.
34. Schnittger S, Kern W, Tschulik C, et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood. 2009;114(11):2220-2231.
35. Kronke J, Schlenk RF, Jensen KO, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol. 2011;29(19):2709-2716.
36. Hubmann M, Kohnke T, Hoster E, et al. Molecular response assessment by quantita- tive real-time polymerase chain reaction after induction therapy in NPM1-mutated patients identifies those at high risk of relapse. Haematologica. 2014;99(8):1317- 1325.
37. Nazha A, Cortes J, Faderl S, et al. Activating internal tandem duplication mutations of the fms-like tyrosine kinase-3 (FLT3-ITD) at complete response and relapse in patients with acute myeloid leukemia. Haematologica. 2012;97(8):1242-1245.
38. Cloos J, Goemans BF, Hess CJ, et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia. 2006;20(7):1217-1220.
39. Smol T, Nibourel O, Marceau-Renaut A, et al. Quantification of EVI1 transcript levels in acute myeloid leukemia by RT-qPCR analy- sis: a study by the ALFA group. Leuk Res. 2015;39(12):1443-1447.
40. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual dis- ease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195-5201.
41. Gianfaldoni G, Mannelli F, Ponziani V, et al. Early reduction of WT1 transcripts during induction chemotherapy predicts for longer disease free and overall survival in acute myeloid leukemia. Haematologica. 2010;95 (5):833-836.
42. Nomdedeu JF, Hoyos M, Carricondo M, et al. Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML. Leukemia. 2013;27(11): 2157-2164.
43. Parkin B, Londono-Joshi A, Kang Q, Tewari M, Rhim AD, Malek SN. Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse. J Clin Invest. 2017;127(9):3484- 3495.
44. Kanagal-Shamanna R. Digital PCR: princi- ples and applications. Methods Mol Biol. 2016;1392:43-50.
45. Klco JM, Miller CA, Griffith M, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015;314 (8):811-822.
46. Morita K, Kantarjian HM, Wang F, et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol. 2018;36(18):1788- 1797.
47. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9-16.
48. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477-2487.
49. Jaiswal S, Fontanillas P, Flannick J, et al. Age- related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488-2498.
50. Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 2018;19(5):269-285.
51. Thol F, Gabdoulline R, Liebich A, et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018;132 (16):1703-1713.
52. Walter RB, Gooley TA, Wood BL, et al. Impact of pretransplantation minimal resid- ual disease, as detected by multiparametric flow cytometry, on outcome of myeloabla- tive hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol. 2011;29(9):1190-1197.
53. Walter RB, Buckley SA, Pagel JM, et al. Significance of minimal residual disease before myeloablative allogeneic hematopoi- etic cell transplantation for AML in first and second complete remission. Blood. 2013;122(10):1813-1821.
54. Araki D, Wood BL, Othus M, et al. Allogeneic hematopoietic cell transplanta- tion for acute myeloid leukemia: time to move toward a minimal residual disease- based definition of complete remission? J Clin Oncol. 2016;34(4):329-336.
55. Zhou Y, Othus M, Araki D, et al. Pre- and post-transplant quantification of measurable ('minimal') residual disease via multipara- meter flow cytometry in adult acute myeloid leukemia. Leukemia. 2016;30(7): 1456-1464.
56. Feller N, van der Pol MA, van Stijn A, et al. MRD parameters using immunophenotypic detection methods are highly reliable in pre- dicting survival in acute myeloid leukaemia. Leukemia. 2004;18(8):1380-1390.
57. Boddu P, Jorgensen J, Kantarjian H, et al. Achievement of a negative minimal residual disease state after hypomethylating agent therapy in older patients with AML reduces the risk of relapse. Leukemia. 2018;32(1): 241-244.
58. Buckley SA, Wood BL, Othus M, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017;102(5):865-873.
59. Shah MV, Jorgensen JL, Saliba RM, et al. Early post-transplant minimal residual dis- ease assessment improves risk stratification in acute myeloid leukemia. Biol Blood Marrow Transplant. 2018;24(7):1514-1520.
60. Nucifora G, Larson RA, Rowley JD. Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood. 1993;82(3):712-715.
1540
haematologica | 2019; 104(8)


































































































   46   47   48   49   50