Page 38 - 2019_08-Haematologica-web
P. 38

B. Ball and E.M. Stein et al.
expansion study. ASH Annual Meeting
2018. Blood. 2018;132(Suppl 1):4048.
55. Kastenhuber ER, Lowe SW. Putting p53 in
context. Cell. 2017;170(6):1062-1078.
56. Zhao Z, Zuber J, Diaz-Flores E, et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev.
2010;24(13):1389-1402.
57. Kadia TM, Jain P, Ravandi F, et al. TP53
mutations in newly diagnosed acute myeloid leukemia: clinicomolecular charac- teristics, response to therapy, and outcomes. Cancer. 2016;122(22):3484-3491.
58. Hou HA, Chou WC, Kuo YY, et al. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J. 2015;5:e331.
59. Rucker FG, Schlenk RF, Bullinger L, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with spe- cific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119(9):2114-2121.
60. Bueso-Ramos CE, Yang Y, deLeon E, McCown P, Stass SA, Albitar M. The human MDM-2 oncogene is overexpressed in leukemias. Blood. 1993;82(9):2617-2623.
61. Li L, Tan Y, Chen X, et al. MDM4 overex- pressed in acute myeloid leukemia patients with complex karyotype and wild-type TP53. PLoS One. 2014;9(11):e113088.
62. Karni-Schmidt O, Lokshin M, Prives C. The roles of MDM2 and MDMX in cancer. Annu Rev Pathol. 2016;11:617-644.
63. Ding Q, Zhang Z, Liu JJ, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem. 2013;56(14):5979-5983.
64. Goldberg A, Horvat, TZ, Hsu, M, et al. Venetoclax combined with either a hypomethylating agent or low-dose cytara- bine shows activity in relapsed and refracto- ry myeloid malignancies. ASH Annual Meeting 2017. Blood. 2017;130(Suppl 1):1353.
65. Aldoss I, Yang D, Aribi A, et al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refrac- tory acute myeloid leukemia. Haematologica. 2018;103(9):e404-e407.
66. Lambert JM, Gorzov P, Veprintsev DB, et al. PRIMA-1 reactivates mutant p53 by cova- lent binding to the core domain. Cancer Cell. 2009;15(5):376-388.
67. Zhang Q, Bykov VJN, Wiman KG, Zawacka-Pankau J. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis. 2018;9(5):439.
68. Sallman D, DeZern, AE, Steensma, DP, et al. Phase 1b/2 combination study of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). ASH Annual Meeting 2018.
69. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223-232.
70. Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106(8):1794-1803.
71. Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291-299.
72. Hollenbach PW, Nguyen AN, Brady H, et al.
A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One. 2010;5(2):e9001.
73. Ball B, Zeidan A, Gore SD, Prebet T. Hypomethylating agent combination strate- gies in myelodysplastic syndromes: hopes and shortcomings. Leuk Lymphoma. 2017;58(5):1022-1036.
74. Wolff F, Leisch M, Greil R, Risch A, Pleyer L. The double-edged sword of (re)expression of genes by hypomethylating agents: from viral mimicry to exploitation as priming agents for targeted immune checkpoint modulation. Cell Commun Signal. 2017;15(1):13.
75. Almstedt M, Blagitko-Dorfs N, Duque- Afonso J, et al. The DNA demethylating agent 5-aza-2'-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leuk Res. 2010;34(7):899-905.
76. Atanackovic D, Luetkens T, Kloth B, et al. Cancer-testis antigen expression and its epi- genetic modulation in acute myeloid leukemia. Am J Hematol. 2011;86(11):918- 922.
77. Fonsatti E, Nicolay HJ, Sigalotti L, et al. Functional up-regulation of human leuko- cyte antigen class I antigens expression by 5- aza-2'-deoxycytidine in cutaneous melanoma: immunotherapeutic implica- tions. Clin Cancer Res. 2007;13(11):3333- 3338.
78. Chiappinelli KB, Strissel PL, Desrichard A, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162(5):974-986.
79. Roulois D, Loo Yau H, Singhania R, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162(5): 961-973.
80. Yang H, Bueso-Ramos C, DiNardo C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylat- ing agents. Leukemia. 2014;28(6):1280-1288.
81. Platzbecker U, Middeke JM, Sockel K, et al. Measurable residual disease-guided treat- ment with azacitidine to prevent haemato- logical relapse in patients with myelodys- plastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multi- centre, phase 2 trial. Lancet Oncol. 2018;19(12):1668-1679.
82. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combina- tion immunotherapy. Nat Rev Clin Oncol. 2016;13(5):273-290.
83. Ribas A, Wolchok JD. Cancer immunother- apy using checkpoint blockade. Science. 2018;359(6382):1350-1355.
84. Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hema- tologic malignancies. Clin Cancer Res. 2008;14(10):3044-3051.
85. Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375(2):143-153.
86. Assi R, Kantarjian, HM, Daver, NG, et al. Results of a phase 2, open-label study of idarubicin (I), cytarabine (A) and nivolumab (Nivo) in patients with newly diagnosed acute myeloid leukemia (AML) and high- risk myelodysplastic syndrome (MDS). ASH Annual Meeting 2018. Blood. 2018;132 (Suppl 1):905.
87. Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 2019;9(3):370-383.
88. Weinstock M, Rosenblatt J, Avigan D. Dendritic cell therapies for hematologic malignancies. Mol Ther Methods Clin Dev. 2017;5:66-75.
89. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74-95.
90. Caux C, Vanbervliet B, Massacrier C, et al. B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. J Exp Med. 1994;180(5):1841-1847.
91. Anguille S, Van de Velde AL, Smits EL, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130( 15):1713-1721.
92. Rosenblatt J, Stone RM, Uhl L, et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med. 2016;8(368): 368ra171.
93. Andrews RG, Takahashi M, Segal GM, Powell JS, Bernstein ID, Singer JW. The L4F3 antigen is expressed by unipotent and multi- potent colony-forming cells but not by their precursors. Blood. 1986;68(5):1030-1035.
94. Appelbaum FR, Bernstein ID. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood. 2017;130(22):2373.
95. Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198-6208.
96. Krupka C, Kufer P, Kischel R, et al. CD33 tar- get validation and sustained depletion of AML blasts in long-term cultures by the bis- pecific T-cell-engaging antibody AMG 330. Blood. 2014;123(3):356-365.
97. Khan N, Hills RK, Virgo P, et al. Expression of CD33 is a predictive factor for effect of gemtuzumab ozogamicin at different doses in adult acute myeloid leukaemia. Leukemia. 2017;31(5):1059-1068.
98. Hamann PR, Hinman LM, Beyer CF, et al. An anti-CD33 antibody-calicheamicin con- jugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem. 2002;13(1):40-46.
99. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490-1496.
100. Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogam- icin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24): 4854-4860.
101.Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508-1516.
102.Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29(4):369-377.
103. Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J
1530
haematologica | 2019; 104(8)


































































































   36   37   38   39   40