Page 76 - 2019_07 resto del Mondo-web
P. 76

N. Santana-Codina et al.
18. Yang A, Rajeshkumar N V, Wang X, et al.
Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 2014;4(8):1–9.
19. Biancur DE, Paulo JA, Małachowska B, et al. Compensatory metabolic networks in pan- creatic cancers upon perturbation of gluta- mine metabolism. Nat Commun. 2017;8: 15965.
20. Paulo J, Mancias J, Gygi S. Proteome-wide protein expression profiling across five pan- creatic cell lines. Pancreas. 2017;46(5):690– 698.
21. McAlister GC, Nusinow DP, Jedrychowski MP, et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differ- ential expression across cancer cell line pro- teomes. Anal Chem. 2014;86(14):7150–7158.
22. Subramanian P, Tamayo P, Mootha, VK, et al. Gene set enrichment analysis: a knowl- edge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–15550.
23. Gautier EF, Ducamp S, Leduc M, et al. Comprehensive proteomic analysis of human erythropoiesis. Cell Rep. 2016;16(5): 1470–1484.
24. An X, Schulz VP, Li J, et al. Global transcrip- tome analyses of human and murine termi- nal erythroid differentiation. Blood. 2014;123(22):3466–3477.
25. Beguin Y. Erythropoietin and platelet pro- duction. Haematologica. 1999;84(6):541– 547.
26. Stohlawetz P, Dzirlo L, Hergovich N, et al. Effects of erythropoietin on platelet reactivi- ty and thrombopoiesis in humans. Blood. 2000;95(9):2983–2989.
27. Ghosh MC, Zhang DL, Ollivierre H, Eckhaus MA, Rouault TA. Translational repression of HIF2a expression in mice with Chuvash polycythemia reverses poly-
cythemia. J Clin Invest. 2018;128(4):1317-
1325.
28. Kobayashi M, Kato H, Hada H, et al. Iron-
heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency. Haematologica. 2017;102(3):454-465.
29. Zhang S, Macias-Garcia A, Velazquez J, Paltrinieri E, Kaufman RJ, Chen J-J. HRI coordinates translation by eIF2aP and mTORC1 to mitigate ineffective erythro- poiesis in mice during iron deficiency. Blood. 2018;131(4):450-461.
30. Korolnek T, Hamza I. Macrophages and iron trafficking at the birth and death of red cells. Blood. 2016;125(19):2893–2898.
31. Chow A, Huggins M, Ahmed J, et al. CD169+ macrophages provide a niche pro- moting erythropoiesis under homeostasis and stress. Nat Med. 2013;19(4):429–436.
32. Theurl I, Hilgendorf I, Nairz M, et al. On- demand erythrocyte disposal and iron recy- cling requires transient macrophages in the liver. Nat Med. 2016;22(8)945–951.
33. Paulson R, Shi L, Wu D-C. Stress erythro- poiesis: new signals and new stress progeni- tor cells. Curr Opin Hematol. 2011;18(3): 139–145.
34. Frazer D, Inglis H, Wilkins S, et al. Delayed hepcidin response explains the lag period in iron absorption following a stimulus to increase erythropoiesis. Gut. 2004;53(10): 1509–1515.
35. Zhang D, Meyron-Holtz EG, Rouault TA. Renal iron metabolism: transferrin iron deliv- ery and the role of iron regulatory proteins. J Am Soc Nephrol. 2007;18(2):401–406.
36. Qian Q, Nath K, Wu Y, Daoud T, Sethi S. Hemolysis and acute kidney failure. Am J Kidney Dis. 2010;56(4):780–784.
37. Ramos P, Casu C, Gardenghi S, et al. Macrophages support pathological erythro- poiesis in polycythemia vera and β-tha-
lassemia. Nat Med. 2013;19(4):437–445.
38. Sonoda Y, Sasaki K. Hepatic extramedullary hematopoiesis and macrophages in the adult mouse: histometrical and immunohisto- chemical studies. Cells Tissues Organs.
2012;196(6):555–564.
39. Klei T, Meinderts S, van den Berg T, van
Bruggen R. From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis. Front Immunol. 2017;8:73.
40. Mueller S, Riedel H, Stremmel V. Direct evi- dence for catalase as the predominant H2O2 -removing enzyme in human erythrocytes. Blood. 1997;90(12):4973–4978.
41. Johnson R, Ho Y, Yu D, Kuypers F, Ravindranath Y, Goyette G. The effect of disruption of genes for peroxiredoxin-2, glu- tathione peroxidase-1 and catalase on ery- throcyte oxidative metabolism. Free Radic Biol Med. 2010;48(4):519.
42. Fenton HJH. Oxidation of tartaric acid in presence of iron. J Chem Soc Trans. 1894;65:899–910.
43. Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic Fenton reagent. J Biol Chem. 1984;259(23): 14354–14356.
44. Doulatov S, Vo L, Macari E, et al. Drug dis- covery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci Transl Med. 2017;9(376).
45. Chakrabarti M, Cockrell A, Park J, McCormick S, Lindahl L, Lindahl P. Speciation of iron mouse liver during devel- opment, iron deficiency, IRP2 deletion and inflammatory hepatitis. Metallomics. 2015;7(1):88–96.
46. Bellelli R, Castellone MD, Guida T, et al. NCOA4 transcriptional coactivator inhibits activation of DNA replication origins. Mol Cell. 2014;55(1):123–137.
1354
haematologica | 2019; 104(7)


































































































   74   75   76   77   78