Page 42 - 2019_07 resto del Mondo-web
P. 42

S. Copsel et al.
acute GvHD via host T reg cell expansion. J
Exp Med. 2016;213(9):1881-1900.
99. Willoughby J, Griffiths J, Tews I, Cragg MS. OX40: Structure and function - What ques-
tions remain? Mol Immunol. 2017;83:13-22. 100. Takeda I, Ine S, Killeen N, et al. Distinct roles for the OX40-OX40 ligand interaction in reg- ulatory and nonregulatory T cells. J
Immunol. 2004;172(6):3580-3589.
101. Piconese S, Pittoni P, Burocchi A, et al. A non- redundant role for OX40 in the competitive fitness of Treg in response to IL-2. Eur J
Immunol. 2010;40(10):2902-2913.
102. Griseri T, Asquith M, Thompson C, Powrie F. OX40 is required for regulatory T cell- mediated control of colitis. J Exp Med.
2010;207(4):699-709.
103. Ruby CE, Yates MA, Hirschhorn-Cymerman
D, et al. Cutting Edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol. 2009;183(8):4853-4857.
104. Gri G, Piconese S, Frossi B, et al. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic respons- es through OX40-OX40L interaction. Immunity. 2008;29(5):771-781.
105. Xiao X, Gong W, Demirci G, et al. New insights on OX40 in the control of T cell immunity and immune tolerance in vivo. J Immunol. 2012;188(2):892-901.
106. Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med. 2008;205(4):825-839.
107. Kitamura N, Murata S, Ueki T, et al. OX40 costimulation can abrogate Foxp3+ regulato- ry T cell-mediated suppression of antitumor immunity. Int J Cancer. 2009;125(3): 630-638.
108. Tsukada N, Akiba H, Kobata T, et al. Blockade of CD134 (OX40)-CD134L interac- tion ameliorates lethal acute graft-versus- host disease in a murine model of allogeneic bone marrow transplantation. Blood. 2000;95(7):2434-2439.
109. Valzasina B, Guiducci C, Dislich H, et al. Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood. 2005;105(7):2845-2851.
110.Tkachev V, Furlan SN, Watkins B, et al. Combined OX40L and mTOR blockade controls effector T cell activation while pre- serving Treg reconstitution after transplant. Sci Transl Med. 2017;9(408).
111. Sanchez-Paulete AR, Labiano S, Rodriguez- Ruiz ME, et al. Deciphering CD137 (4-1BB) signaling in T-cell costimulation for transla- tion into successful cancer immunotherapy. Eur J Immunol. 2016;46(3):513-522.
112. Myers LM, Vella AT. Interfacing T-cell effec- tor and regulatory function through CD137 (4-1BB) co-stimulation. Trends Immunol. 2005;26(8):440-446.
113. Zheng G, Wang B, Chen A. The 4-1BB cos- timulation augments the proliferation of CD4+CD25+ regulatory T cells. J Immunol. 2004;173(4):2428-2434.
114.Irie J, Wu Y, Kachapati K, Mittler RS, Ridgway WM. Modulating protective and pathogenic CD4+ subsets via CD137 in type 1 diabetes. Diabetes. 2007;56(1):186-196.
115. Lee J, Lee EN, Kim EY, et al. Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of inflammatory bowel disease. Immunol Lett. 2005;101(2): 210-216.
116. Kim YH, Choi BK, Shin SM, et al. 4-1BB triggering ameliorates experimental autoimmune encephalomyelitis by modu-
lating the balance between Th17 and regu- latory T cells. J Immunol. 2011;187(3):1120- 1128.
117. Yoo JK, Choo YK, Kwak DH, et al. Protective effects of agonistic anti-4-1BB antibody on the development of imiquimod-induced pso- riasis-like dermatitis in mice. Immunol Lett. 2016;178:131-139.
118. Blazar BR, Kwon BS, Panoskaltsis-Mortari A, et al. Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus- leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol. 2001;166(5):3174-3183.
119.Nozawa K, Ohata J, Sakurai J, et al. Preferential blockade of CD8(+) T cell responses by administration of anti-CD137 ligand monoclonal antibody results in differ- ential effect on development of murine acute and chronic graft-versus-host diseases. J Immunol. 2001;167(9):4981-4986.
120. Kim J, Choi WS, La S, et al. Stimulation with 4-1BB (CD137) inhibits chronic graft-versus- host disease by inducing activation-induced cell death of donor CD4+ T cells. Blood. 2005;105(5):2206-2213.
121. Kim J, Kim W, Kim HJ, et al. Host CD25+CD4+Foxp3+ regulatory T cells primed by anti-CD137 mAbs inhibit graft- versus-host disease. Biol Blood Marrow Transplant. 2012;18(1):44-54.
122. Richard AC, Ferdinand JR, Meylan F, et al. The TNF-family cytokine TL1A: from lym- phocyte costimulator to disease co-conspira- tor. J Leukoc Biol. 2015;98(3):333-345.
123. Bittner S, Knoll G, Ehrenschwender M. Death receptor 3 signaling enhances prolifer- ation of human regulatory T cells. FEBS Lett. 2017;591(8):1187-1195.
124. Sidhu-Varma M, Shih DQ, Targan SR. Differential Levels of Tl1a Affect the Expansion and Function of Regulatory T Cells in Modulating Murine Colitis. Inflamm Bowel Dis. 2016;22(3):548-559.
125.Taraban VY, Slebioda TJ, Willoughby JE, et al. Sustained TL1A expression modulates effector and regulatory T-cell responses and drives intestinal goblet cell hyperplasia. Mucosal Immunol. 2011;4(2):186-196.
126.Schreiber TH, Wolf D, Tsai MS, et al. Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflamma- tion. J Clin Invest. 2010;120(10):3629-3640.
127. Khan SQ, Tsai MS, Schreiber TH, et al. Cloning, expression, and functional charac- terization of TL1A-Ig. J Immunol. 2013;190(4):1540-1550.
128. Schreiber TH, Wolf D, Bodero M, Gonzalez L, Podack ER. T cell costimulation by TNFR superfamily (TNFRSF)4 and TNFRSF25 in the context of vaccination. J Immunol. 2012;189(7):3311-3318.
129. Lambracht-Washington D, Rosenberg RN. Co-stimulation with TNF receptor super- family 4/25 antibodies enhances in-vivo expansion of CD4+CD25+Foxp3+ T cells (Tregs) in a mouse study for active DNA Abeta42 immunotherapy. J Neuroimmunol. 2015;278:90-99.
130. Wolf D, Barreras H, Bader CS, et al. Marked in Vivo Donor Regulatory T Cell Expansion via Interleukin-2 and TL1A-Ig Stimulation Ameliorates Graft-versus-Host Disease but Preserves Graft-versus-Leukemia in Recipients after Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2017;23(5):757-766.
131. Nishikii H, Kim BS, Yokoyama Y, et al. DR3 signaling modulates the function of Foxp3+ regulatory T cells and the severity of acute graft-versus-host disease. Blood. 2016;
132.
128(24):2846-2858.
Copsel S, Wolf D, Kale B, et al. Very Low Numbers of CD4(+) FoxP3(+) Tregs Expanded in Donors via TL1A-Ig and Low- Dose IL-2 Exhibit a Distinct Activation/Functional Profile and Suppress GVHD in a Preclinical Model. Biol Blood Marrow Transplant. 2018;24(9):1788-1794.
133.Madireddi S, Eun SY, Mehta AK, et al. Regulatory T Cell-Mediated Suppression of Inflammation Induced by DR3 Signaling Is Dependent on Galectin-9. J Immunol. 2017;199(8):2721-2728.
134. Wolf D, Schreiber TH, Tryphonopoulos P, et al. Tregs expanded in vivo by TNFRSF25 agonists promote cardiac allograft survival. Transplantation. 2012;94(6):569-574.
135. Kim BS, Nishikii H, Baker J, et al. Treatment with agonistic DR3 antibody results in expansion of donor Tregs and reduced graft- versus-host disease. Blood. 2015;126(4):546- 557.
136. Wolf D, Bader CS, Barreras H, et al. Superior immune reconstitution using Treg-expanded donor cells versus PTCy treatment in preclin- ical HSCT models. JCI Insight. 2018;3(20).
137. Copsel SN, Lightbourn CO, Barreras H, et al. BET Bromodomain Inhibitors Which Permit Treg Function Enable a Combinatorial Strategy to Suppress GVHD in Pre-clinical Allogeneic HSCT. Front Immunol. 2019;9:3104.
138.Tacke M, Hanke G, Hanke T, Hunig T. CD28-mediated induction of proliferation in resting T cells in vitro and in vivo without engagement of the T cell receptor: evidence for functionally distinct forms of CD28. Eur J Immunol. 1997;27(1):239-247.
139. Langenhorst D, Gogishvili T, Ribechini E, et al. Sequential induction of effector function, tissue migration and cell death during poly- clonal activation of mouse regulatory T-cells. PLoS One. 2012;7(11):e50080.
140. Lin CH, Hunig T. Efficient expansion of reg- ulatory T cells in vitro and in vivo with a CD28 superagonist. Eur J Immunol. 2003;33 (3):626-638.
141.Beyersdorf N, Gaupp S, Balbach K, et al. Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med. 2005;202(3): 445-455.
142. Gogishvili T, Langenhorst D, Luhder F, et al. Rapid regulatory T-cell response prevents cytokine storm in CD28 superagonist treated mice. PLoS One. 2009;4(2):e4643.
143. Schmidt J, Elflein K, Stienekemeier M, et al. Treatment and prevention of experimental autoimmune neuritis with superagonistic CD28-specific monoclonal antibodies. J Neuroimmunol. 2003;140(1-2):143-152.
144. van den Brandt J, Fischer HJ, Walter L, et al. Type 1 diabetes in BioBreeding rats is critical- ly linked to an imbalance between Th17 and regulatory T cells and an altered TCR reper- toire. J Immunol. 2010;185(4):2285-2294.
145. Rodriguez-Palmero M, Franch A, Castell M, et al. Effective treatment of adjuvant arthritis with a stimulatory CD28-specific monoclon- al antibody. J Rheumatol. 2006;33(1): 110- 118.
146. Zaiss MM, Frey B, Hess A, et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol. 2010;184(12):7238-7246.
147. Miyasato K, Takabatake Y, Kaimori J, et al. CD28 superagonist-induced regulatory T cell expansion ameliorates mesangioproliferative glomerulonephritis in rats. Clin Exp Nephrol. 2011;15(1):50-57.
1320
haematologica | 2019; 104(7)


































































































   40   41   42   43   44