Page 194 - 2019_07 resto del Mondo-web
P. 194

R. van Oorschot et al. References
1. Machlus KR, Thon JN, Italiano JE Jr. Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet for- mation. Br J Haematol. 2014;165(2):227-236.
2. Bianchi E, Norfo R, Pennucci V, Zini R, Manfredini R. Genomic landscape of megakaryopoiesis and platelet function defects. Blood. 2016;127(10):1249-1259.
3. Lefrancais E, Ortiz-Munoz G, Caudrillier A, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progeni- tors. Nat New Biol. 2017;544(7648):105-109.
4. Eto K, Kunishima S. Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood. 2016;127(10):1234- 1241.
5. Monteferrario D, Bolar NA, Marneth AE, et al. A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med. 2014;370(3):245-253.
6. Stevenson WS, Morel-Kopp MC, Chen Q, et al. GFI1B mutation causes a bleeding disor- der with abnormal platelet function. J Thromb Haemost. 2013;11(11):2039-2047.
7. Marneth AE, van Heerde WL, Hebeda KM, et al. Platelet CD34 expression and alpha/delta-granule abnormalities in GFI1B and RUNX1-related familial bleeding disor- ders. Blood. 2017;129(12):1733-1736.
8. Kitamura K, Okuno Y, Yoshida K, et al. Functional characterization of a novel GFI1B mutation causing congenital macrothrombo- cytopenia. J Thromb Haemost. 2016;14(7): 1462-1469.
9. Ferreira CR, Chen D, Abraham SM, et al. Combined alpha-delta platelet storage pool deficiency is associated with mutations in GFI1B. Mol Genet Metab. 2016;120(3):288- 294.
10. Uchiyama Y, Ogawa Y, Kunishima S, et al. A novel GFI1B mutation at the first zinc finger domain causes congenital macrothrombocy- topenia. Br J Haematol. 2017;181(6):843-847.
11. Rabbolini DJ, Morel-Kopp MC, Chen Q, et al. Thrombocytopenia and CD34 expres- sion is decoupled from alpha-granule defi- ciency with mutation of the first GFI1B zinc finger. J Thromb Haemost. 2017;15 (11):2245-2258.
12. Schulze H, Schlagenhauf A, Manukjan G, et al. Recessive grey platelet-like syndrome with unaffected erythropoiesis in the absence of the splice isoform GFI1B-p37. Haematologica. 2017;102(9):e375-e378.
13. Saleque S, Kim J, Rooke HM, Orkin SH. Epigenetic regulation of hematopoietic dif- ferentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell. 2007;27(4):562-572.
14. Laurent B, Randrianarison-Huetz V, Frisan E, et al. A short Gfi-1B isoform controls ery- throid differentiation by recruiting the LSD1- CoREST complex through the dimethylation of its SNAG domain. J Cell Sci. 2012;125(Pt 4):993-1002.
15. van der Meer LT, Jansen JH, van der Reijden BA. Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia. 2010;24(11):1834- 1843.
16. Cai C, He HH, Gao S, et al. Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcription- al activity. Cell Rep. 2014;9(5):1618-1627.
17. Kerenyi MA, Shao Z, Hsu YJ, et al. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. Elife. 2013;2:e00633.
18. Sprussel A, Schulte JH, Weber S, et al. Lysine-
ment of LSD1. Nat Cell Biol. 2016;18(1):21- ic progenitor proliferation and is essential for 32.
specific demethylase 1 restricts hematopoiet-
terminal differentiation. Leukemia.
2012;26(9):2039-2051.
19. Dignam JD, Lebovitz RM, Roeder RG.
Accurate transcription initiation by RNA polymerase II in a soluble extract from isolat- ed mammalian nuclei. Nucleic Acids Res. 1983;11(5):1475-1489.
20. Smits AH, Jansen PW, Poser I, Hyman AA, Vermeulen M. Stoichiometry of chromatin- associated protein complexes revealed by label-free quantitative mass spectrometry- based proteomics. Nucleic Acids Res. 2013;41(1):e28.
21. Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem. 2003;75(3):663-670.
22. Migliaccio G, Sanchez M, Masiello F, et al. Humanized culture medium for clinical expansion of human erythroblasts. Cell Transplant. 2010;19(4):453-469.
23. Heideveld E, Masiello F, Marra M, et al. CD14+ cells from peripheral blood positively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield. Haematologica. 2015;100(11):1396- 1406.
24. Hansen M, Varga E, Wust T, et al. Generation and characterization of human iPSC line MML-6838-Cl2 from mobilized peripheral blood derived megakaryoblasts. Stem Cell Res. 2017;18:26-28.
25. Hansen M, Varga E, Aarts C, et al. Efficient production of erythroid, megakaryocytic and myeloid cells, using single cell-derived iPSC colony differentiation. Stem Cell Res. 2018;29:232-244.
26. Vizcaino JA, Deutsch EW, Wang R, et al. ProteomeXchange provides globally coordi- nated proteomics data submission and dis- semination. Nat Biotechnol. 2014;32(3):223- 226.
27. Bantscheff M, Hopf C, Savitski MM, et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol. 2011;29(3):255-265.
28. Fiolka K, Hertzano R, Vassen L, et al. Gfi1 and Gfi1b act equivalently in haematopoiesis, but have distinct, non-over- lapping functions in inner ear development. EMBO Rep. 2006;7(3):326-333.
29. Ishikawa Y, Gamo K, Yabuki M, et al. A novel LSD1 inhibitor T-3775440 disrupts GFI1B-containing complex leading to transdifferentiation and impaired growth of AML cells. Mol Cancer Ther. 2017;16(2):273- 284.
30. Zeddies S, Jansen SB, di Summa F, et al. MEIS1 regulates early erythroid and megakaryocytic cell fate. Haematologica. 2014;99(10):1555-1564.
31. Albers CA, Cvejic A, Favier R, et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet. 2011;43(8):735-737.
32. Gunay-Aygun M, Falik-Zaccai TC, Vilboux T, et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet alpha-granules. Nat Genet. 2011;43(8):732-734.
33. Kahr WH, Hinckley J, Li L, et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet. 2011;43(8):738-740.
34. Thambyrajah R, Mazan M, Patel R, et al. GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruit-
35. Ceballos-Chavez M, Rivero S, Garcia- Gutierrez P, et al. Control of neuronal differ- entiation by sumoylation of BRAF35, a sub- unit of the LSD1-CoREST histone demethy- lase complex. Proc Natl Acad Sci U S A. 2012;109(21):8085-8090.
36. Maiques-Diaz A, Somervaille TC. LSD1: biologic roles and therapeutic targeting. Epigenomics. 2016;8(8):1103-1116.
37. Foudi A, Kramer DJ, Qin J, et al. Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation. J Exp Med. 2014;211(5):909-927.
38. Duek A, Lundberg P, Shimizu T, et al. Loss of Stat1 decreases megakaryopoiesis and favors erythropoiesis in a JAK2-V617F-driven mouse model of MPNs. Blood. 2014;123 (25):3943-3950.
39. Huang Z, Richmond TD, Muntean AG, Barber DL, Weiss MJ, Crispino JD. STAT1 promotes megakaryopoiesis downstream of GATA-1 in mice. J Clin Invest. 2007;117 (12):3890-3899.
40. Haldar S, Roy A, Banerjee S. Differential reg- ulation of MCM7 and its intronic miRNA cluster miR-106b-25 during megakary- opoiesis induced polyploidy. RNA Biol. 2014;11(9):1137-1147.
41. Raslova H, Kauffmann A, Sekkai D, et al. Interrelation between polyploidization and megakaryocyte differentiation: a gene pro- filing approach. Blood. 2007;109(8):3225- 3234.
42. Deppermann C, Cherpokova D, Nurden P, et al. Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest. 2013;123(8):3331-3342.
43. Guerrero JA, Bennett C, van der Weyden L, et al. Gray platelet syndrome: proinflamma- tory megakaryocytes and alpha-granule loss cause myelofibrosis and confer metastasis resistance in mice. Blood. 2014;124(24):3624- 3635.
44. Kahr WH, Lo RW, Li L, et al. Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice. Blood. 2013;122(19):3349-3358.
45. Urban D, Li L, Christensen H, et al. The VPS33B-binding protein VPS16B is required in megakaryocyte and platelet alpha-granule biogenesis. Blood. 2012;120(25):5032-5040.
46. Lo B, Li L, Gissen P, et al. Requirement of VPS33B, a member of the Sec1/Munc18 pro- tein family, in megakaryocyte and platelet alpha-granule biogenesis. Blood. 2005;106 (13):4159-4166.
47. Mayer L, Jasztal M, Pardo M, et al. The BEACH-domain containing protein, Nbeal2, interacts with Dock7, Sec16a and Vac14. Blood. 2017;131(9):1000-1011.
48. Ru YX, Zhao SX, Dong SX, Yang YQ, Eyden B. On the maturation of megakaryocytes: a review with original observations on human in vivo cells emphasizing morphology and ultrastructure. Ultrastruct Pathol. 2015;39(2): 79-87.
49. Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system - implications for cell cycle control and the targeted treat- ment of cancer. Biochim Biophys Acta. 2014;1843(1):150-162.
50. Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell. 2016;61(5):683-694.
51. Joshi A, Kundu M. Mitophagy in hematopoi- etic stem cells: the case for exploration. Autophagy. 2013;9(11):1737-1749.
52. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685-698.
1472
haematologica | 2019; 104(7)


































































































   192   193   194   195   196