Page 160 - 2019_07 resto del Mondo-web
P. 160

A. Torossian et al.
knockdown, which was associated with a remarkable impairment in subcutaneous tumor development. Finally, we used a combination of rapamycin and crizotinib to induce an overactivation of autophagy, which did not rely on BCL2 downregulation. We found that enhanced autophagic flux correlated with impaired cell viability but occurred independently of apoptosis, suggesting the involvement of another cell death modality. Autophagy has, indeed, been shown to provide a scaffold for the necroptotic machinery46 and also to determine the means of cell death by serving as a switch between apoptosis and necroptosis.47
Further investigations are currently under way to deci- pher whether excessive autophagy and promotion of cell death upon ALK and BCL2 downregulation in ALK-positive ALCL involve the activation of convergent and interlinked cell death pathways, including autophagy, apoptosis and necroptosis. Either way, our results provide strong evidence for a massive reduction in tumor cell viability following combined ALK and BCL2 inactivation in ALK-positive ALCL, demonstrating that the molecular targeting of BCL2 could widen the therapeutic options for these patients and potentially improve their outcome by reducing the options for cancer cell escape routes.
Acknowledgments
The authors would like to thank the Inserm and Fondation ARC pour la Recherche sur le Cancer (SGiu and EE), the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie grant agreement n. 675712 (SGiu and EE), the ANR-16-CE12-018-03 (EE) for grants. The authors also thank the Université Paul Sabatier (AT), the Ligue Nationale contre le Cancer (JF) and Labex TOUCAN/Laboratoire d’excellence Toulouse Cancer (CD) for individual fellowships. The authors thank the Anexplo-Génotoul platform, Inserm/UPS, US006/CREFRE, Toulouse, France (F. Capilla and C. Salon at the histology facility) and the flow cytometry facility of CRCT/UMR1037/Inserm/UPS/ERL5294 CNRS, Toulouse, France (M. Farcé) for their technical assis- tance. They thank Dr. G. Mitou (CRCT/ Inserm/UMR1037) for her help in the development of the mRFP-EGFP-LC3 KARPAS-299 cells, Dr S. Kermorgant (Barts Cancer Institute, London, UK) for generously providing tools and advice regarding the c-MET protein and Dr. C. Philippe (CRCT/Inserm/UMR1037/UPS) for her help with cell cycle flow cytometry analyses. They also thank Dr. R. Chiarle, Dr. S. Ducamp (Boston Children Hospital, Boston, USA), Dr. F. Meggetto and Dr. C. Joffre (CRCT/Inserm/UMR1037) for helpful discussions. English proofreading was performed by Greenland scientific proofreading.
References
1. Turner SD, Lamant L, Kenner L, Brugières L. Anaplastic large cell lymphoma in paedi- atric and young adult patients. Br J Haematol. 2016;173(4):560-572.
2. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-2390.
3. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucle- olar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281- 1284.
4. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11-23.
5. Werner MT, Zhao C, Zhang Q, Wasik MA. Nucleophosmin-anaplastic lymphoma kinase: the ultimate oncogene and thera- peutic target. Blood. 2017;129(7):823-831.
6. Christensen JG, Zou HY, Arango ME, et al. Cytoreductive antitumor activity of PF- 2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experi- mental models of anaplastic large-cell lym- phoma. Mol Cancer Ther. 2007;6(12):3314- 3322.
7. Gambacorti Passerini C, Farina F, Stasia A,
et al. Crizotinib in Advanced, Chemoresistant Anaplastic Lymphoma Kinase-Positive Lymphoma Patients. J Natl Cancer Inst. 2014;106(2):djt378.
8. Kruczynski A, Delsol G, Laurent C, Brousset P, Lamant L. Anaplastic lym- phoma kinase as a therapeutic target. Expert Opin Ther Targets 2012; 16(11):1127-1138.
9. SharmaGG,MotaI,MologniL,PatruccoE, Gambacorti-Passerini C, Chiarle R. Tumor
Resistance against ALK Targeted Therapy- Where It Comes From and Where It Goes. Cancers (Basel). 2018;10(3).
10. Frentzel J, Sorrentino D, Giuriato S. Targeting Autophagy in ALK-Associated Cancers. Cancers (Basel). 2017;9(12).
11. Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24(1):24-41.
to affect autophagy. Autophagy. 2014;
10(8):1474-1475.
22. Pattingre S, Levine B. Bcl-2 inhibition of
autophagy: a new route to cancer? Cancer
Res. 2006;66(6):2885-2888.
23. Souers AJ, Leverson JD, Boghaert ER, et al.
ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202-
12. White E, DiPaola RS. The double-edged 208.
sword of autophagy modulation in cancer.
Clin Cancer Res. 2009;15(17):5308-5316.
13. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, et al. Autophagy in malignant transfor- mation and cancer progression. EMBO J.
2015;34(7):856-880.
14. Joffre C, Djavaheri-Mergny M, Pattingre S,
Giuriato S. L’autophagie : le yin et le yang des cancers. Med Sci (Paris). 2017; 33(3):328-334.
15. Doherty J, Baehrecke EH. Life, death and autophagy. Nat Cell Biol. 2018; 20(10):1110-1117.
16. Lalaoui N, Lindqvist LM, Sandow JJ, Ekert PG. The molecular relationships between apoptosis, autophagy and necroptosis. Semin Cell Dev Biol. 2015;3963-3969.
17. Long JS, Ryan KM. New frontiers in pro- moting tumour cell death: targeting apop- tosis, necroptosis and autophagy. Oncogene. 2012;31(49):5045-5060.
18. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27(50):6398–6406.
19. Pattingre S, Tassa A, Qu X, et al. Bcl-2 anti-
apoptotic proteins inhibit Beclin 1-depen-
dent autophagy. Cell. 2005;122(6):927-939.
20. Lindqvist LM, Heinlein M, Huang DCS, Vaux DL. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibit- ing Bax and Bak. Proc Natl Acad Sci U S A.
2014;111(23):8512-8517.
21. Lindqvist LM, Vaux DL. BCL2 and related
prosurvival proteins require BAK1 and BAX
24. Mihalyova J, Jelinek T, Growkova K, Hrdinka M, Simicek M, Hajek R. Venetoclax: A new wave in hematooncolo- gy. Exp Hematol. 2018:61:10-25.
25. Tolcher AW, Rodrigueza WV, Rasco DW, et al. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;73(2):363-371.
26. Misso G, Di Martino MT, De Rosa G, et al. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. 2014;3(9):e194.
27. Zarone MR, Misso G, Grimaldi A, et al. Evidence of novel miR-34a-based therapeu- tic approaches for multiple myeloma treat- ment. Sci Rep. 2017;7(1):17949.
28. Farooqi A, Tabassum S, Ahmad A. MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers. Int J Mol Sci. 2017;18(10).
29. Lamant L, Espinos E, Duplantier M, et al. Establishment of a novel anaplastic large- cell lymphoma-cell line (COST) from a “small-cell variant” of ALCL. Leukemia. 2004;18(10):1693-1698.
30. Mitou G, Frentzel J, Desquesnes A, et al. Targeting autophagy enhances the anti- tumoral action of crizotinib in ALK-posi- tive anaplastic large cell lymphoma. Oncotarget. 2015;6(30):30149-30164.
31. Villalva C, Bougrine F, Delsol G, et al. Bcl-2 expression in anaplastic large cell lym-
1438
haematologica | 2019; 104(7)


































































































   158   159   160   161   162