Page 85 - 2019_06-Haematologica-web
P. 85

Combined LSD1 and ATRA in AML
nation promotes cytotoxic response provides an addition- al rationale to explore this combination in AML patients. Treatment of non-APL AML cell lines with GSK2879552 and ATRA results in synergistic cleavage of caspases 3 and 7, the executioner caspases.35 The synergistic cell death occurs after the observed changes in cell surface marker expression and may suggest that as cells reach terminal differentiation, this process is a signal to the cells to under- go apoptosis in a manner similar to the life cycle of normal immune cells.36 Given that the gene set enrichment analy- sis revealed that the lysosome and mTOR pathways are also affected with the combination, another possibility is
that the differentiation triggers an autophagic response that leads to a switch to apoptosis.28 Importantly, applying the combination to primary patient samples ex vivo suc- cessfully illustrates that a beneficial combination effect is not restricted to cultured cell lines. The broad response of cell lines and primary AML samples to the combination does preclude the ability to identify a biomarker preclini- cally. Pretreatment biopsy assessment will, therefore, be required to determine which patients will most likely respond to the combination. Taken together, these results highlight the possibility of achieving a cure in AML through treatment with LSD1 inhibitors and ATRA.
References
1. FangJ,YingH,MaoT,etal.Upregulationof CD11b and CD86 through LSD1 inhibition promotes myeloid differentiation and sup- presses cell proliferation in human monocyt- ic leukemia cells. Oncotarget. 2017;8(49):85085-85101.
2. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neo- plasms and acute leukemia. Blood. 2016; 127(20):2391-2405.
3. DombretH,GardinC.Anupdateofcurrent treatments for adult acute myeloid leukemia. Blood. 2016;127(1):53-61.
4. Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood. 2016; 127(1):42-52.
5. Zhou C, Wu F, Lu L, et al. Structure activity relationship and modeling studies of inhibitors of lysine specific demethylase 1. PLoS One. 2017;12(2):e0170301.
6. ShiYJ,MatsonC,LanF,IwaseS,BabaT,Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell. 2005;19(6):857-864.
7. Saleque S, Kim J, Rooke HM, Orkin SH. Epigenetic regulation of hematopoietic dif- ferentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell. 2007;27(4):562-572.
8. HarrisWJ,HuangX,LynchJT,etal.Thehis- tone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell. 2012;21(4):473-487.
9. McGrath JP, Williamson KE, Balasubramanian S, et al. Pharmacological Inhibition of the Histone Lysine Demethylase KDM1A Suppresses the Growth of Multiple Acute Myeloid Leukemia Subtypes. Cancer Res. 2016;76(7):1975-1988.
10. Lynch JT, Harris WJ, Somervaille TC. LSD1 inhibition: a therapeutic strategy in cancer? Expert Opin Ther Targets. 2012;16(12):1239- 1249.
11. Mohammad HP, Smitheman KN, Kamat CD, et al. A DNA Hypomethylation Signature Predicts Antitumor Activity of LSD1 Inhibitors in SCLC. Cancer Cell. 2015;28(1):57-69.
12. Maes T, Mascaro C, Tirapu I, et al. ORY-
1001, a Potent and Selective Covalent KDM1A Inhibitor, for the Treatment of Acute Leukemia. Cancer Cell. 2018; 33(3):495-511 e412.
13. Cusan M, Cai SF, Mohammad HP, et al. LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPalpha-dependent enhancers in AML. Blood. 2018;131(15):1730-1742.
14. de The H, Pandolfi PP, Chen Z. Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure. Cancer Cell. 2017;32(5):552-560.
15. Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res. 2013;54(7):1761-1775.
16. Melnick A, Licht JD. Deconstructing a dis- ease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood. 1999; 93(10):3167-3215.
17. Zhou GB, Zhao WL, Wang ZY, Chen SJ, Chen Z. Retinoic acid and arsenic for treat- ing acute promyelocytic leukemia. PLoS Med. 2005;2(1):e12.
18. Johnson DE, Redner RL. An ATRActive future for differentiation therapy in AML. Blood Rev. 2015;29(4):263-268.
19. Schenk T, Chen WC, Gollner S, et al. Inhibition of the LSD1 (KDM1A) demethy- lase reactivates the all-trans-retinoic acid dif- ferentiation pathway in acute myeloid leukemia. Nat Med. 2012;18(4):605-611.
20. Kaniskan HU, Martini ML, Jin J. Inhibitors of Protein Methyltransferases and Demethylases. Chem Rev. 2018; 118(3):989- 1068.
21. Foucquier J, Guedj M. Analysis of drug com- binations: current methodological land- scape. Pharmacol Res Perspect. 2015 3(3):e00149.
22. Sprussel A, Schulte JH, Weber S, et al. Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia. 2012;26(9):2039-2051.
23. van Lochem EG, van der Velden VH, Wind HK, te Marvelde JG, Westerdaal NA, van Dongen JJ. Immunophenotypic differentia- tion patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin Cytom.
2004;60(1):1-13.
24. Chen L, Flies DB. Molecular mechanisms of
T cell co-stimulation and co-inhibition. Nat
Rev Immunol. 2013;13(4):227-242.
25. Marsee DK, Pinkus GS, Yu H. CD71 (trans- ferrin receptor): an effective marker for ery- throid precursors in bone marrow biopsy specimens. Am J Clin Pathol. 2010;
134(3):429-435.
26. Song HO, Ryu JS. Superoxide anion produc-
tion by human neutrophils activated by Trichomonas vaginalis. Korean J Parasitol. 2013;51(4):479-484.
27. Finkel TH, Pabst MJ, Suzuki H, et al. Priming of neutrophils and macrophages for enhanced release of superoxide anion by the calcium ionophore ionomycin. Implications for regulation of the respiratory burst. J Biol Chem. 1987;262(26):12589-12596.
28. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15(2):81-94.
29. Danchenko N, Satia JA, Anthony MS. Epidemiology of systemic lupus erythe- matosus: a comparison of worldwide dis- ease burden. Lupus. 2006;15(5):308-318.
30. Grassi L, Pourfarzad F, Ullrich S, et al. Dynamics of Transcription Regulation in Human Bone Marrow Myeloid Differentiation to Mature Blood Neutrophils. Cell Rep. 2018;24(10):2784- 2794.
31. Regazzi MB, Iacona I, Gervasutti C, Lazzarino M, Toma S. Clinical pharmacoki- netics of tretinoin. Clin Pharmacokinet. 1997;32(5):382-402.
32. Russo D, Regazzi M, Sacchi S, et al. All-trans retinoic acid (ATRA) in patients with chronic myeloid leukemia in the chronic phase. Leukemia. 1998;12(4):449-454.
33. Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482- 1490.
34. Kim ES. Enasidenib: First Global Approval. Drugs. 2017;77(15):1705-1711.
35. Koff JL, Ramachandiran S, Bernal-Mizrachi L. A time to kill: targeting apoptosis in can- cer. Int J Mol Sci. 2015;16(2):2942-2955.
36. Nagata S. Apoptosis and clearance of apop- totic cells. Annu Rev Immunol. 2018; 36:489-517.
haematologica | 2019; 104(6)
1167


































































































   83   84   85   86   87