Page 29 - 2019_06-Haematologica-web
P. 29

Sickle cell trait is not completely harmless
2018;14(3):e1007293.
36. Austin H, Key NS, Benson JM, et al. Sickle
cell trait and the risk of venous thromboem- bolism among blacks. Blood. 2007;110(3): 908-912.
37. Bucknor MD, Goo JS, Coppolino ML. The risk of potential thromboembolic, renal and cardiac complications of sickle cell trait. Hemoglobin. 2014;38(1):28-32.
38. Folsom AR, Tang W, Roetker NS, et al. Prospective study of sickle cell trait and venous thromboembolism incidence. J Thromb Haemost. 2015;13(1):2-9.
39. Sheikha A. Splenic syndrome in patients at high altitude with unrecognized sickle cell trait: splenectomy is often unnecessary. Can J Surg. 2005;48(5):377-381.
40. Seegars MB, Brett AS. Splenic infarction associated with sickle cell trait at low alti- tude. Hematology. 2015;20(10):607-609.
41. Goodman J, Hassell K, Irwin D, Witkowski EH, Nuss R. The splenic syndrome in indi- viduals with sickle cell trait. High Alt Med Biol. 2014;15(4):468-471.
42. Larrabee KD, Monga M. Women with sickle cell trait are at increased risk for preeclamp- sia. Am J Obstet Gynecol. 1997;177(2):425- 428.
43. Hamdi IM, Karri KS, Ghani EA. Pregnancy outcome in women with sickle cell trait. Saudi Med J. 2002;23(12):1455-1457.
44. Adeyemi AB, Adediran IA, Kuti O, Owolabi AT, Durosimi MA. Outcome of pregnancy in a population of Nigerian women with sickle cell trait. J Obstet Gynaecol.
2006;26(2):133-137.
45. Porter B, Key NS, Jauk VC, Adam S, Biggio J,
Tita A. Impact of sickle hemoglobinopathies on pregnancy-related venous thromboem- bolism. Am J Perinatol. 2014;31(9):805-809.
52. Geva A, Clark JJ, Zhang Y, Popowicz A, Manning JM, Neufeld EJ. Hemoglobin Jamaica Plain--a sickling hemoglobin with reduced oxygen affinity. N Engl J Med. 2004;351(15):1532-1538.
53. Jorge SE, Petruk AA, Kimura EM, et al. Hb S- Sao Paulo: a new sickling hemoglobin with stable polymers and decreased oxygen affin- ity. Arch Biochem Biophys. 2012;519(1):23-
46. Cohen-Solal M, Prehu C, Wajcman H, et al.
A new sickle cell disease phenotype associ-
ating Hb S trait, severe pyruvate kinase defi-
ciency (PK Conakry), and an alpha2 globin
gene variant (Hb Conakry). Br J Haematol. 31.
1998;103(4):950-956.
47. Alli N, Coetzee M, Louw V, et al. Sickle cell
disease in a carrier with pyruvate kinase
deficiency. Hematology. 2008;13(6):369-372. 48. Ustun C, Kutlar F, Holley L, Seigler M, Burgess R, Kutlar A. Interaction of sickle cell trait with hereditary spherocytosis: splenic infarcts and sequestration. Acta Haematol.
2003;109(1):46-49.
49. Bernaudin F, Arnaud C, Kamdem A, et al.
Biological impact of alpha genes, beta haplo- types, and G6PD activity in sickle cell ane- mia at baseline and with hydroxyurea. Blood Adv. 2018;2(6):626-637.
54. Monplaisir N, Merault G, Poyart C, et al. Hemoglobin S antilles: A variant with lower solubility than hemoglobin S and producing sickle cell disease in heterozygotes. Proc Natl Acad Sci U S A. 1986;83(24):9363-9367.
55. Cross TJ, Berry PA, Akbar N, Wendon J, Thein SL, Harrison PM. Sickle liver disease- an unusual presentation in a compound het- erozygote for HbS and a novel beta-tha- lassemia mutation. Am J Hematol. 2007;82 (9):852-854.
56. Koenig SC, Becirevic E, Hellberg MS, et al. Sickle cell disease caused by heterozygosity for Hb S and novel LCR deletion: report of two patients. Am J Hematol. 2009;84(9):603-
50. Benkerrou M, Alberti C, Couque N, et al.
Impact of glucose-6-phosphate dehydroge- 606.
nase deficiency on sickle cell anaemia expression in infancy and early childhood: a prospective study. Br J Haematol. 2013;163(5):646-654.
51. Bouanga JC, Mouele R, Prehu C, Wajcman H, Feingold J, Galacteros F. Glucose-6-phos- phate dehydrogenase deficiency and homozygous sickle cell disease in Congo. Hum Hered. 1998;48(4):192-197.
57. Swensen JJ, Agarwal AM, Esquilin JM, et al. Sickle cell disease due to uniparental disomy in a child who inherited sickle cell trait. Blood. 2010;116(15):2822-2825.
58. Vinatier I, Martin X, Costa JM, Bazin A, Giraudier S, Joly P. A late onset sickle cell disease reveals a mosaic segmental uni- parental isodisomy of chromosome 11p15. Blood Cells Mol Dis. 2015;54(1):53-55.
haematologica | 2019; 104(6)
1111


































































































   27   28   29   30   31