Page 194 - 2019_06-Haematologica-web
P. 194

A.S. Schelpe et al.
purpura. Haematologica. 2010;95(9):1555-
1562.
11. Klaus C, Plaimauer B, Studt J-D, et al.
Epitope mapping of ADAMTS13 autoanti- bodies in acquired thrombotic thrombocy- topenic purpura. Blood. 2004;103(12):4514- 4519.
12. Luken BM, Turenhout EAM, Hulstein JJJ, Van Mourik JA, Fijnheer R, Voorberg J. The spacer domain of ADAMTS13 contains a major binding site for antibodies in patients with thrombotic thrombocytopenic purpu- ra. Thromb Haemost. 2005;93(2):267-274.
13. Peyvandi F, Scully M, Kremer Hovinga JA, et al. Caplacizumab for Acquired Thrombotic Thrombocytopenic Purpura. N Engl J Med. 2016;374(6):511-522.
14. Peyvandi F, Scully M, Kremer Hovinga JA, et al. Caplacizumab reduces the frequency of major thromboembolic events, exacerba- tions and death in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2017;15(7):1448-1452.
15. Beloncle F, Buffet M, Coindre J-P, et al. Splenectomy and/or cyclophosphamide as salvage therapies in thrombotic thrombocy- topenic purpura: the French TMA Reference Center experience. Transfusion. 2012; 52(11):2436-2444.
16. Purnamawati K, Ong JA, Deshpande S, et al. The Importance of Sex Stratification in Autoimmune Disease Biomarker Research: A Systematic Review. Front Immunol. 2018; 9:1208.
17. Damoiseaux J, Andrade LE, Fritzler MJ, Shoenfeld Y. Autoantibodies 2015: From diagnostic biomarkers toward prediction, prognosis and prevention. Autoimmun Rev. 2015;14(6):555-563.
18. Hueber W, Utz PJ, Steinman L, Robinson WH. Autoantibody profiling for the study and treatment of autoimmune disease. Arthritis Res. 2002;4(5):290.
19. Ayoglu B, Schwenk JM, Nilsson P. Antigen arrays for profiling autoantibody reper- toires. Bioanalysis. 2016;8(10):1105-1126.
20. Fathman CG, Soares L, Chan SM, Utz PJ. An array of possibilities for the study of autoim- munity. Nature. 2005;435(7042):605-611.
21. Sullivan MA, Wentworth T, Kobie JJ, Sanz I. Anti-idiotypic monobodies for immune response profiling. Methods. 2012;58(1):62- 68.
22. Sanches J de S, De Aguiar RB, Parise CB, Suzuki JM, Chammas R, de Moraes JZ. Anti-bevacizumab idiotype antibody vacci- nation is effective in inducing vascular endothelial growth factor-binding response, impairing tumor outgrowth. Cancer Sci. 2016;107(4):551-555.
23. HuL,LiuA,ChenW,YangH,WangX, Chen F. A non-toxic enzyme-linked immunosorbent assay for aflatoxin B 1 using anti-idiotypic antibodies as substi- tutes. J Sci Food Agric. 2017;97(5):1640- 1645.
24. Lubahn BC, Reisner HM. Characterization of a monoclonal anti-idiotype antibody to human anti-factor VIII antibodies. Proc Natl Acad Sci U S A. 1990;87(21):8232-8236.
25. Robinson WH. Sequencing the functional antibody repertoire--diagnostic and thera-
peutic discovery. Nat Rev Rheumatol. 2015;
11(3):171-182.
26. Maat P, Van Duijn M, Brouwer E, et al. Mass
spectrometric detection of antigen-specific immunoglobulin peptides in paraneoplastic patient sera. J Autoimmun. 2012;38(4):354- 360.
27. de Costa D, Broodman I, Calame W, et al. Peptides from the Variable Region of Specific Antibodies Are Shared among Lung Cancer Patients. PLoS One. 2014;9(5): e96029.
28. Coppo P, Wolf M, Veyradier A, et al. Prognostic value of inhibitory anti- ADAMTS13 antibodies in adult-acquired thrombotic thrombocytopenic purpura. Br J Haematol. 2006;132(1):66-74.
29. Thomas MR, de Groot R, Scully MA, Crawley JTB. Pathogenicity of Anti- ADAMTS13 Autoantibodies in Acquired Thrombotic Thrombocytopenic Purpura. EBioMedicine. 2015;2(8):942-952.
30. Ferrari S, Scheiflinger F, Rieger M, et al. Prognostic value of anti-ADAMTS13 anti- body features (Ig isotype, titer, and inhibito- ry effect) in a cohort of 35 adult French patients undergoing a first episode of thrombotic microangiopathy with unde- tectable ADAMTS13 activity. Blood. 2007;109(7): 2815-2822.
31. Alwan F, Vendramin C, Vanhoorelbeke K, et al. Presenting ADAMTS13 antibody and antigen levels predict prognosis in immune- mediated thrombotic thrombocytopenic purpura. Blood. 2017;130(4):466-471.
32. Yang S, Jin M, Lin S, Cataland S, Wu H. ADAMTS13 activity and antigen during therapy and follow-up of patients with idio- pathic thrombotic thrombocytopenic pur- pura: correlation with clinical outcome. Haematologica. 2011;96(10):1521-1527.
33. Vesely SK, George JN, Lämmle B, et al. ADAMTS13 activity in thrombotic throm- bocytopenic purpura--hemolytic uremic syndrome: relation to presenting features and clinical outcomes in a prospective cohort of 142 patients. Blood. 2003;102 (1):60-68.
34. Peyvandi F, Lavoretano S, Palla R, et al. ADAMTS13 and anti-ADAMTS13 antibod- ies as markers for recurrence of acquired thrombotic thrombocytopenic purpura dur- ing remission. Haematologica. 2008; 93(2):232-239.
35. Kremer Hovinga JA, Vesely SK, Terrell DR, Lämmle B, George JN. Survival and relapse in patients with thrombotic thrombocy- topenic purpura. Blood. 2010;115(8):1500- 11; quiz 1662.
36. Rose M, Eldor A. High incidence of relapses in thrombotic thrombocytopenic purpura: Clinical Study of 38 Patients. Am J Med. 1987;83(3):437-444.
37. Wyllie BF, Garg AX, Macnab J. Thrombotic thrombocytopenic purpura/haemolytic uraemic syndrome: a new index predicting response to plasma exchange. Br J Haematol. 2006;132(2):204-209.
38. Bendapudi PK, Hurwitz S, Fry A, et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies:
a cohort study. Lancet Haematol. 2017;4(4):
e157-e164.
39. Benhamou Y, Assie C, Boelle P-Y, et al.
Development and validation of a predictive model for death in acquired severe ADAMTS13 deficiency-associated idio- pathic thrombotic thrombocytopenic pur- pura: the French TMA Reference Center experience. Haematologica. 2012;97(8):1181-1186.
40. Pos W, Luken BM, Kremer Hovinga JA, et al. VH1-69 germline encoded antibodies directed towards ADAMTS13 in patients with acquired thrombotic thrombocy- topenic purpura. J Thromb Haemost. 2009;7(3):421-428.
41. Luken BM, Kaijen PHP, Turenhout EAM, et al. Multiple B-cell clones producing antibod- ies directed to the spacer and disintegrin/thrombospondin type-1 repeat 1 (TSP1) of ADAMTS13 in a patient with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2006;4(11):2355-2364.
42. Roose E, Vidarsson G, Kangro K, et al. Anti- ADAMTS13 Autoantibodies against Cryptic Epitopes in Immune-Mediated Thrombotic Thrombocytopenic Purpura. Thromb Haemost. 2018;118(10):1729-1742.
43. Pos W, Sorvillo N, Fijnheer R, et al. Residues arg568 and phe592 contribute to an. anti- genic surface for anti-adamts13 antibodies in the spacer domain. Haematologica. 2011; 96(11):1670-1677.
44. Yamaguchi Y, Moriki T, Igari A, et al. Epitope analysis of autoantibodies to ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Thromb Res. 2011;128(2):169-173.
45. Grillberger R, Casina VC, Turecek PL, Zheng XL, Rottensteiner H, Scheiflinger F. Anti-ADAMTS13 IgG autoantibodies pres- ent in healthy individuals share linear epi- topes with those in patients with thrombot- ic thrombocytopenic purpura. Haematologica. 2014;99(4):e58-60.
46. Mariotte E, Azoulay E, Galicier L, et al. Epidemiology and pathophysiology of adulthood-onset thrombotic microangiopa- thy with severe ADAMTS13 deficiency (thrombotic thrombocytopenic purpura): a cross-sectional analysis of the French national registry for thrombotic microan- giopathy. Lancet Haematol. 2016;3(5):e237- 245.
47. Bulashev AK, Borovikov SN, Serikova SS, Suranshiev ZA, Kiyan VS, Eskendirova SZ. Development of an ELISA using anti-idio- typic antibody for diagnosis of opisthorchi- asis. Folia Parasitol (Praha). 2016;63.
48. Masuda T, Motomura M, Utsugisawa K, et al. Antibodies against the main immuno- genic region of the acetylcholine receptor correlate with disease severity in myasthe- nia gravis. J Neurol Neurosurg Psychiatry. 2012;83(9):935-940.
49. Huijbers MG, Lipka AF, Plomp JJ, Niks EH, van der Maarel SM, Verschuuren JJ. Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis. J Intern Med. 2014;275(1):12-26.
1276
haematologica | 2019; 104(6)


































































































   192   193   194   195   196